
COMPUTATIONAL MODELS OF THE PERCEPTUAL,

COGNITIVE, AND MOTOR PROCESSES INVOLVED

IN THE VISUAL SEARCH OF PULL-DOWN

MENUS AND COMPUTER SCREENS

by

Anthony John Hornof

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer Science and Engineering)

in The University of Michigan
1999

Doctoral Committee:

Associate Professor David E. Kieras, Chair
Associate Professor William P. Birmingham
Professor John E. Laird
Professor David E. Meyer
Professor Judith S. Olson

Anthony John Hornof©
 All Rights Reserved

1999

For all those people

who have a hard time finding

what they are looking for.

ii

ACKNOWLEDGMENTS

This work was supported by the Advanced Research Projects Agency under Order

B328 to the University of Michigan, David E. Kieras, principal investigator, and by the

Office of Naval Research through Grant N00014-92-J-1173 to the University of Michigan,

David E. Kieras and David E. Meyer, principal investigators.

I would like to thank my advisor David Kieras for overseeing my transformation

from a New York City business systems consultant to a research university professor. At

every step of the way, you asked the right questions and lowered your brows just enough

to motivate good performance but never enough so that your patience and kindness failed to

shine through. I am also very grateful for the financial support that you provided.

Thank you, David Meyer, for letting me crash all of your graduate seminars on

human cognition. I hope to take your Socratic style of interrogation with me to all of the

graduate seminars I ever get to teach.

Thank you, Judy and Gary Olson, for setting a model for how to run a welcoming

and inclusive laboratory that invites investigation and provides training in all aspects of my

favorite field of research, human-computer interaction.

Thank you, John Laird and Bill Birmingham, for your ongoing support of my

dissertation research and general intellectual growth, as well as for your thoughtful advice

regarding my recent career decisions.

Thank you, Erik Nilsen, for your assistance and critique of my work.

Thank you to my family for your support and encouragement.

Thank you to the Creator, who goes by many names to many people, including but

not limited to Allah, Brahma, God, Jah, Jehovah, Jesus, Krishna, and Yahweh.

iii

TABLE OF CONTENTS

DEDICATION . i i

ACKNOWLEDGMENTS . iii

LIST OF FIGURES . vi

LIST OF APPENDICES .x

CHAPTERS

1 . INTRODUCTION .1

1.1 Computer Interfaces Require Visual Search.......................................1
1.2 Many Screen Layouts Are Unnecessarily Difficult to Search2
1.3 Possible Solutions Exist...3
1.4 The Goals of This Research...4
1.5 The Structure of This Dissertation..5

2 . REVIEW OF RELEVANT RESEARCH. .6

2.1 The Origin of the Scientific Study of Search......................................6
2.2 Psychological Research on Visual Search...8

2.2.1 Experimental Phenomena of Visual Search...............................8
2.2.2 Models of Visual Search...10
2.2.3 The Programming of Eye Movements for Visual Search..............13
2.2.4 Tools for Predicting Visual Search of Computer Interfaces...........16

2.3 Menu Search18
2.3.1 Menu Design Guidelines...19
2.3.2 Experimental Phenomena in Computer Menu Search..................21
2.3.3 Proposed Hypotheses for Menu Search30
2.3.4 Many Conflicting Hypotheses37

2.4 Cognitive Modeling38
2.5 Conclusion40

3 . INTRODUCTION TO THE MODELS .42

3.1 The EPIC Cognitive Architecture..42
3.2 The Modeled Task...48

3.2.1 Procedure..48
3.2.2 Results..... .50

3.3 Inputs to the Architecture...53
3.3.1 The Task Environment...53
3.3.2 The Perceptual Encodings...55
3.3.3 Enhancements to the Architecture...58
3.3.4 Named Locations...60

3.4 Conclusion61

iv

4 . MODELING RESULTS. .62

4.1 Randomly Ordered Menu Models62
4.1.1 Serial Processing Models..63
4.1.2 Parallel Processing Models..65

4.2 Numerically Ordered Menu Models...76
4.2.1 Immediate Look, Point, and Click Models..............................76
4.2.2 Immediate Look, Point, Check and Correct Models82

4.3 Discussion..86
4.3.1 Further Support of the Models..86
4.3.2 Comparison to a Menu Model in ACT-R................................89

4.4 Conclusion91

5 . CONTRIBUTIONS AND IMPLICATIONS .92

5.1 Further Validation of Cognitive Modeling..92
5.2 A Unified Theory of Visual Search..93
5.3 New Insights into Menu Search94
5.4 Implications for Menu Design Guidelines..97
5.5 New Insights into Manual Motor Control .. .101
5.6 Future Modeling of Menu Search..102
5.7 Future Modeling of General Visual Search.....................................103
5.8 Building a Screen Layout Analysis Tool..107
5.9 Concluding Remarks..111

BIBLIOGRAPHY. .150

v

LIST OF FIGURES

Figure

1.1. The link to “Liberal Arts” is very difficult to find on this web page because of
the random placement of all the items.
(http://osu.orst.edu/colleges/colleges.htm, 6/8/99).....................................2

1.2. The menu bar in Microsoft Word 97. Some users opt to display another
three or four rows of buttons, led to believe by software manufacturers that
more is better. But more visual distractors will only make it more difficult to
find the truly useful visual targets..3

2.1. An example of a target (an open circle) amidst distractors (closed circles),
based on Treisman (1986)...9

2.2. On the left, the Microsoft Windows NT “Start” menu, opened millions times
across the world every workday. On the right, the standard “File” menu that
appears in most Macintosh applications. .. .19

2.3. Menu design guidelines proposed by Mayhew (1992), and menu usage
subtasks. The subtasks that are part of the processes of search and selection
are indicated at the top. An X indicates that accomplishing the subtask will
probably be easier when the guideline is followed....................................21

3.1. Overview of the EPIC architecture, showing flow of information and
control. The processors run independently and in parallel. (From Kieras &
Meyer, 1997.) .. .44

3.2. The retinal zones defined in EPIC, and typical sizes used in modeling. Sizes
are the radii in degrees of visual angle. The visual stimulus “⊗” appears
outside of the bouquet and fovea, but inside of the parafovea and periphery......45

3.3. Nilsen’s menu selection task with a randomly ordered menu and six items in
the menu..49

3.4. Nilsen’s observed data for randomly and numerically ordered menus. Mean
selection times as a function of Serial Position of target item, for menus with
three (), six (), or nine () items. Also: Time required to move the
mouse to each Serial Position as predicted by Fitts’ law with a coefficient of
120. (From Experiment 2 in Nilsen, 1991.) .. .52

3.5. The same data as in Figure 3.4, but collapsed by menu length and expanded
by menu style (walking versus click-open).. .52

3.6. EPIC’s Visual Space window shows the objects in the task environment and
where EPIC is looking during model execution. Shown here is the task

vi

environment for the Nilsen menu selection experiment with an eye-to-screen
distance of 24 inches. The mouse cursor, represented by the crosshairs, is
sitting where it clicked on the “GO” box. The gray circle is EPIC’s fovea,
indicating that EPIC’s gaze is currently on the bottom menu item. The
borders of the parafovea can be seen in the top left and right corners...............54

3.7. A maximally efficient foveal sweep. The models make the theoretical
assertion that a person can make a chain of eye movements that will sweep a
column of visual objects with as few fixations as possible, and yet insure that
every object will be captured by the fovea during a fixation.58

4.1. Selection times observed (solid lines) and predicted (dashed lines) by the
Serial Processing Random Search model run with one item fitting into the
fovea.... .64

4.2. Selection times observed (solid lines) and predicted (dashed lines) by the
Serial Processing Systematic Search model run with one item fitting into the
fovea. The predicted times for the same Serial Position in different menu
lengths are the same and are thus superimposed.......................................65

4.3. Parallel Processing Random Search model...66

4.4. Selection times observed (solid lines) and predicted (dashed lines) by the
Parallel Processing Random Search model run with one item (top graph) and
three items (bottom graph) fitting into the fovea.......................................67

4.5. Parallel Processing Systematic Search model..69

4.6. Selection times observed (solid lines) and predicted (dashed lines) by the
Parallel Processing Systematic Search model run with one item (top graph)
and three items (bottom graph) fitting into the fovea. In each graph, the
predicted times for the same Serial Position in different length menus are the
same and are thus superimposed. .. .70

4.7. Selection times observed (solid lines) and predicted (dashed lines) by the
Dual Strategy Hybrid model, with one item (top graph) and three items
(bottom graph) fitting into the fovea. .. .72

4.8. Selection times observed (solid lines) and predicted (dashed lines) with by
the Dual Strategy Varying Distance Hybrid model, with 43% of the trials
using random search and 57% of the trials using systematic search, and with
one item fitting into the fovea on 18% of the trials and three items fitting into
the fovea on 82% of the trials..75

4.9. The same data and predictions as shown in Figure 4.8, but collapsed by
menu length and expanded by menu style (walking versus click-open)............75

4.10. The Immediate Look, Point, and Click strategy.......................................77

4.11. Selection times observed by Nilsen and predicted by the Immediate Look,
Point, and Click strategy run with standard Fitts’ coefficients of 100 and
140... .77

4.12. Selection times observed by Nilsen and predicted by the Immediate Look,

vii

Point, and Click strategy run with Fitts’ coefficients increased to 175 and
220... .79

4.13. The Immediate Look, Point, and Click strategy with Special Case for
Position 1 branch..80

4.14. Selection times observed by Nilsen and predicted by the Immediate Look,
Point, and Click strategy with Special Case for Position 1 run with
nonstandard Fitts’ coefficients of 175 and 220..81

4.15. The Immediate Look, Point, Check and Correct strategy.83

4.16. Selection times observed by Nilsen and predicted by the Immediate Look,
Point, Check and Correct strategy run with exact location knowledge.84

4.17. Selection times observed by Nilsen and predicted by the Immediate Look,
Point, Check and Correct strategy run with approximate location knowledge
(e = 0.1).... .85

4.18. Selection times observed by Nilsen and predicted by the Immediate Look,
Point, Check and Correct strategy run with approximate location knowledge
(e = 0.1) and with a click-and-point compound movement style....................86

4.19. Observed data from Byrne et al. (1999). Mean selection times as a function
of the Serial Position of target item, for menus with six, nine, or twelve
items. The disappearance of the menu length effect in Serial Positions 2
through 4 would be predicted by the DSVDH strategy if the first random eye
movement were constrained to land on one of the first few items...................88

4.20. Selection times observed by Nilsen and predicted by the EPIC and ACT-R
menu selection models, for both randomly and numerically ordered menus.
The EPIC models are the Dual Strategy Varying Distance Hybrid (DSVDH)
model and the Immediate Look, Point, Check and Correct (ILPCC) model.
Also, the average absolute error (AAE) of each model. .. .90

5.1. Selection time as a function of the Serial Position of the target item, for
menus of alphabetically ordered words and numerically ordered digits.
Selection time for words and digits increase at the same rate, but words
consistently require an additional 850 msec..97

5.2. If a user is looking for the keyword “Spelling” and makes a maximally
efficient foveal sweep down the left edge of these menu items, he or she will
miss the target. (This menu is from MORE 3.1 by Symantec.).....................98

5.3. Some menus require the user to move the mouse cursor to the item to
determine what the item is. Such menus result in very slow visual search.
(Netscape Navigator 3.04 for the Macintosh)..99

5.4. The DSVDH and ILPCC models’ predictions for, respectively, Nilsen’s
randomly and numerically ordered menu data. All are collapsed by menu
length and expanded by menu style. For each ordering, the “button
depression effect” is the difference between the walking () and click-open
() selection times. The button depression effect is explained very well by
Fitts’ coefficients of 100 and 140. .. .102

viii

5.5. Find the “Case Sensitive” check box. This is a more general visual search
task than finding an item in a pull-down menu. (From BBEdit 3.5.2 by Bare
Bones Software)...104

5.6. Find the “SAQ” object in the “111” group. This is a less real-world task than
that shown in Figure 5.5. But reliable data from such a task can reveal
fundamental aspects of visual search..104

5.7. A screen layout that could be used as an input to a screen layout analysis
tool. This is the main web page for undergraduate engineering computer
support services at the University of Michigan in early 1997.
(http://www.engin.umich.edu/caen/, 3/10/97).......................................109

5.8. The visual regions and objects corresponding to the screen layout shown in
Figure 5.7. This is spatial information that would be used by the screen
layout analysis tool to predict visual search times...................................110

ix

LIST OF APPENDICES

Appendix

A. The Serial Processing Random Search Strategy.....................................112

B. The Serial Processing Systematic Search Strategy..................................117

C. The Parallel Processing Random Search Strategy...................................122

D. The Parallel Processing Systematic Search Strategy................................127

E. The Immediate Look, Point, and Click Strategy.....................................132

F. The Immediate Look, Point, and Click Strategy with Special Case for
Position 1...136

G. The Immediate Look, Point, Check and Correct Strategy with Special Case
for Position 1 .. .142

x

CHAPTER 1

INTRODUCTION

A major challenge in making software easy for people to use is to design screen

layouts that people can search efficiently. Although there has been a great deal of research

on visual search, the field of human-computer interaction (HCI) still does not have an

empirically validated model of the perceptual, cognitive, and motor processes that people

use when they look for a known item on a computer screen. There are many guidelines to

direct the design of computer screen layouts, but few if any have been explained in terms of

how these processes give rise to the guidelines. This dissertation presents the first

empirically validated models of the perceptual, cognitive, and motor processes involved in

the visual search of computer menus, models that can be generalized to explain the

cognitive processes involved in more general computer layout visual search tasks on a

computer.1 These models should contribute to the design and analysis of more usable

computer systems.

1.1 Computer Interfaces Require Visual Search

People using computers are routinely faced with the challenge of finding something

on a computer screen. The task could be as simple as finding the trash can on the Apple

Macintosh desktop (it is always at the bottom right hand corner), or as difficult as finding

the link to “Liberal Arts” on the Oregon State University web page shown in Figure 1.1.

As more information is delivered via computers (such as the World Wide Web)

1The same models have already been presented by Hornof and Kieras (1997; 1999).

1

2

Figure 1.1. The link to “Liberal Arts” is very difficult to find on this
web page because of the random placement of all the items.
(http://osu.orst.edu/colleges/colleges.htm, 6/8/99)

rather than print media, and in the absence of typographic standards for computer layouts

and in the absence of armies of trained graphic designers, people will continue to be faced

with difficult visual search tasks.

1.2 Many Screen Layouts Are Unnecessarily Difficult to Search

The World Wide Web offers a cornucopia of screen layouts that are difficult to

search, such as that shown in Figure 1.1, but even day-to-day desktop software presents

challenging visual search tasks. Software developers have led the public to believe that the

more buttons and gadgets that are visible to the user on the computer screen, the better.

But the proliferation of menu bars (such as that shown in Figure 1.2) has only added to the

difficulty in finding the few things that the user really needs.

3

Figure 1.2. The menu bar in Microsoft Word 97. Some users opt to display
another three or four rows of buttons, led to believe by software
manufacturers that more is better. But more visual distractors will only make
it more difficult to find the truly useful visual targets.

1.3 Possible Solutions Exist

It is possible to design computer screens that can be efficiently searched.

Guidelines exist (Apple Computer, 1993; Galitz, 1993; Mayhew, 1992; Smith & Mosier,

1986), and most difficult-to-search screen layouts could have been vastly improved if the

designers had better followed these guidelines. But sometimes guidelines can be

misleading. For example, some designers (Tufte, 1983) profess that visual clutter should

be eliminated. This would seem to fix a lot of problems, such as the icon bar proliferation

shown in Figure 1.2, but sometimes a crowded layout is actually best.2 Staggers (1993)

demonstrated this in a field study of computer workstations used by nurses; the densest

screen layouts evoked the best overall performance, and were also the nurses’ preferred

layouts. Guidelines need to be further evaluated and improved based on empirical studies,

but even those that currently exist can help software designers to develop more usable

software.

Guidelines can only take the designer part way to a usable interface; the usefulness

of many screen layouts depends largely on the task for which the screen layout is intended.

Hence, the true usefulness of a layout will always be an empirical question that can only be

answered in the exact context of its intended use. A person designing a screen layout can

2Carswell (1992) in fact demonstrated that Tufte’s (1983) data-ink principle (which states
that any redundant display of information should be avoided) is not a good predictor of
user performance for a graphical perception task, and that a more principled approach such
as Cleveland’s basic tasks model (Cleveland & McGill, 1985) is a better predictor.

4

work with guidelines as best as possible, but he or she cannot conduct a usability study for

every single layout he or she proposes. Designers need automated usability prediction

tools built directly into the same tools that they use to build their interfaces. The designers

would set a usability goal in terms of time, number of steps required to accomplish a task,

cognitive or visual complexity, or other objective criteria, and propose and evaluate layout

after layout until arriving at one that the tool predicts would meet the design requirements.

Just as guidelines need to be based on empirical observations, a tool that predicts

human performance in visual search tasks also needs to be based on a theory of human

visual search that is itself based on empirical data. Many theories have been proposed

regarding visual search. This dissertation attempts to synthesize a number of the dominant

theories into a model that can be used to make a priori predictions regarding how long a

person would take to find something on a computer screen layout, and the cognitive

processing required. The specific task modeled in this dissertation is that of searching for a

known target item in a pull-down menu. Cognitive models of how people search pull-

down menus will lead to models of more general search tasks, both of which will lead to

better predictive tools and more usable interfaces.

1.4 The Goals of This Research

The high level goals of this dissertation are: (a) Build models that explain the

perceptual, cognitive, and motor processes that people use when they search for a known

item in a pull-down menu. (b) Validate these models with empirical data. (c) Use the

models to propose the perceptual, cognitive, and motor processes that people likely use in

more general search tasks on computer screen layouts. (d) Make practical and theoretical

contributions, enumerated next.

Practical contributions include: (a) With a better understanding of how people find

what they are looking for on a computer screen, provided by this dissertation, screen layout

designers will be able to design interfaces that better complement the processes and

5

strategies that people really use. (b) The dissertation provides a theoretical basis for design

guidelines that will help the field of human-computer interaction to better understand which

guidelines have true merit and should be promoted. (c) Exploratory modeling of visual

search, such as that done this dissertation, is necessary before purely predictive modeling

of visual search can be done; this dissertation thus moves the field of human-computer

interaction closer to when it can incorporate predictive tools into screen layout design tools.

Theoretical contributions include: (a) This dissertation contributes to basic research

in the area of visual search by applying the new theory-building power of cognitive

modeling to pre-existing data and tasks, and in doing so resolves theoretical debates that

exist in the literature. (b) This dissertation integrates research from many different

researchers and many different subfields (including vision, visual search, cognitive

psychology, and computer science) and moves the scientific community closer to a

realization of Newell’s (1990) unified theory of cognition.

1.5 The Structure of This Dissertation

This chapter introduces the high level problem addressed by the dissertation.

Chapter 2 discusses previous work done in the major areas of research that feed into this

dissertation, including search, visual search, and menu search. Chapter 3 introduces the

basic components of the cognitive models of menu search developed for this dissertation.

Chapter 4 presents the results of these models. Chapter 5 discusses various implications of

the models, such as how they contribute to improving the usability of computer systems.

CHAPTER 2

REVIEW OF RELEVANT RESEARCH

There has been an enormous amount of research done in the fields of visual search,

menu search and selection, and cognitive modeling, much of which contributes to the

cognitive models of visual search of pull-down menus and computer screens presented in

this dissertation. This chapter reviews the literature, emphasizing research that contributes

to the modeling work presented in this dissertation, and that demonstrates the need for this

new work. The main bodies of literature that will be reviewed include general visual

search, visual search of computer menus, and cognitive modeling of human-computer

interaction.

2.1 The Origin of the Scientific Study of Search

Many important technological advances have been motivated by military enterprise

(Smith, 1985). One of these was the study of search. The military began the scientific

study of search during World War II because, in this war, search requirements and

challenges vastly exceeded those of previous wars. In World War II, complex human-

machine technology systems were used to move, hide, search, and kill over much longer

distances than in previous conflicts. Developments in electronic search aids to meet these

challenges, such as radar and sonar, were required.3

The first modern scientific work studying search is a Navy document entitled

3Dramatic accounts of high-tech searches for submarines, for example, are presented in
Sontag and Drew (1998) and Clancy (1984).

6

7

Search and Screening (Koopman, 1946). The preface of this report states:

In World War II, it became progressively more apparent that large classes of
problems were united by common bonds and could be handled by common
methods, that there was indeed unity in diversity. And as in other fields of
scientific endeavor, where the clarifying influence of general ideas and
methods can form a body of isolated facts into a powerful theory...,
methods borrowed from the mathematician and mathematical physicist
showed their power and usefulness in those classes of problems in which
the body of practical information had sufficiently accumulated. In this
regard, one field was pre-eminently ripe for mathematical treatment: the
field involving problems of search.

In every question of search there are in principle two parts. One
involves the targets, and studies their physical characteristics, position, and
motion.... The other part involves the searcher, his capabilities, position,
and motion. (p. ix)

This excerpt points out that (a) this was, as far as these scientists could determine, the first

scientific investigation of the study of search, and (b) the new field brought together

problems and methods from many different fields of study. The latter has remained the

case over the years, as will be seen in the discussion of visual search that follows. The

excerpt also succinctly states the basic problem of search—a person with certain capabilities

looks for a target with certain features. This characterization of the problem pervades all

models of search.

Koopman (1946) contains numerous mathematical models for target detection by

visual contact, radar, and sonar. The report details tactics for conducting aerial escorts,

sonar screens, and other wartime activity. Since it presents techniques for finding and

avoiding being found by the enemy, it is easy to understand why the report was initially

classified as “confidential.”

But the report is more than just an interesting historical artifact; rather, it seeds the

field of visual search. The earliest mathematical models of computer-based menu selection,

those of Card (1982; 1983) were influenced by the work of Krendel and Wodinsky (1960),

who were influenced by the work of E. S. Lamar, the author of the visual search models

presented in Koopman (1946).

8

2.2 Psychological Research on Visual Search

The two fields that seem to be making the most progress in building comprehensive

theories of visual search are the fields of cognitive psychology and eye movement research.

A third field that provides a wealth of data, but less theory to integrate it, is the field of

human factors. This review will discuss the literature that is most relevant for this

dissertation drawing from all three fields—experimental observations from the field of

human factors, and theory developed from the fields of cognitive psychology and eye

movement research.

The theories developed in cognitive psychology and eye movement research will be

presented separately because, when it comes to visual search, the two fields are somewhat

disconnected. Cognitive psychology emphasizes the cognitive processes that are required,

and tends to assume that eye movements will occur when needed. Eye movement research

looks at the processes that would be needed to move the eyes, but says little about how

these processes would be integrated into other perceptual, cognitive, and motor processes.

One researcher states that “eye movements and visual cognition have in the past seemed like

two separate continents separated by an enormous and ill-charted ocean.” (Findlay, 1992)

But there is gold in all three continents. This review will first discuss empirical

observations, drawing in part from the field of human factors. Then, the review will

discuss theories of visual search from cognitive psychology and from eye movement

research.

2 .2 .1 Experimental Phenomena of Visual Search

In visual search experiments, participants are presented with a series of individual

tasks, or trials, of the following form:

1. The participant is shown the object that he or she will be expect to find,
the object that will be the target during the search. This preparatory
presentation is called the precue.

2. The precue disappears and the target appears hidden amidst many

9

nontarget objects, or distractors , usually in an unstructured visual field
that has no particular organization. A clock starts to measure how long
the participant takes to find the target.

3. The participant searches for the target and indicates when he or she has
found it, which stops the clock. The participant also provides some
information to confirm that they did actually find the target, such as by
indicating the location of the target object.

An example task can be seen in Figure 2.1. The target is the open circle. The distractors

are the closed circles.

Figure 2.1. An example of a target (an open circle) amidst
distractors (closed circles), based on Treisman (1986).

Many visual search experiments have been nicely summarized by Boff and Lincoln (Boff &

Lincoln, 1988). Basic phenomena that have been consistently observed include:

1. A person can find a target more quickly when the target can be
distinguished from distractors based on a primary feature, such as size,
color, shape, or orientation. This is sometimes described as “target pop-
out.” (Engel, 1977; Treisman, 1986; Williams, 1966a)

2. A person can find a target more quickly when there are fewer distractors
present (Drury & Clement, 1978; Neisser, 1963).

3. A person can find a target more quickly when there are fewer different
kinds of distractors present (i.e., the same number of distractors, but of
more different colors, shapes, sizes, or orientations.) (Gordon, 1968).

4. The more discernible the target is from the background (i.e., the greater
the contrast), the more quickly a person can find the target (Boynton &
Boss, 1971; Krendel & Wodinsky, 1960).

5. The more discernible the target is from the distractors (i.e., the greater the
difference in color or size), the more quickly a person can find the target
(Bloomfield, 1972; Carter & Carter, 1981).

6. A person can find a target more quickly in a smaller search field (Krendel

10

& Wodinsky, 1960).

7. A person can find a target more quickly after practice with the same target
and distractors (Gordon, 1968; Neisser, 1963).

8. A person can find a target more quickly than they can determine that a
target is absent (Jonides & Gleitman, 1972; Neisser, 1963).

9. A person can find a target more quickly when there is a predictable
structure to a visual scene (Biederman, 1972; Biederman, Glass &
Stacey, 1973).

This is a brief summary of consistently observed phenomena from experiments in

which participants were presented with visual search tasks. Many of these studies also

propose some sort of small-scale theory to explain the particular phenomena observed in

the study. But rather than discussing these isolated theories, this review will instead

discuss three comprehensive theories of visual search from the field of cognitive

psychology.

2 . 2 . 2 Models of Visual Search

This section will present three cognitive psychology models that account for many

of the experimental observations made in visual search experiments discussed above. They

are Neisser’s (1963) simple search model, Treisman’s (1986) feature integration theory,

and Cave and Wolfe’s (1990) guided search model.

Simple Search Model

Neisser’s (1963) simple search model assumes that people look at each item in turn

and terminate the search when they find the target. The model thus predicts that response

time will increase linearly as a function of the total number of objects that must be

examined. The model (as presented by Dosher, 1998) states that the mean predicted

response time when a target is absent will be

RTa = αa + β(ms)

and that the mean predicted response time when a target is present will be

11

RTp = α p +
β(ms + 1)

2
.

where ms represents the total number of items in the display; β represents the amount of

search time required to examine each item in a serial, non-overlapping search; and α

represents a constant amount of time required for other processes not related to the number

of items in the display (which might change depending on whether the target is absent or

present).

This model can explain the preceding experimental observations 2 and 8.

Feature Integration Model

Treisman’s (1986) feature integration theory pertains to what kind of pre-attentive

visual information is placed in visual working memory and is thus made available to a

search strategy. The theory is not a complete model of visual search. However, when

combined with a theory of parallel and serial search strategies, the theory becomes a

complete model of visual search.

The feature integration theory asserts that early in the processing of visual

information, a separate feature map is created for each primary feature (such as size, color,

shape, and orientation), a map that encodes the location of all occurrences of that feature.

These feature maps are searched in parallel, pre-attentively, for the presence of a single

object that possesses a simple feature corresponding to one of the maps. If the target item

possesses such a feature, it can be found very quickly and without serial attentive search.

To the participant, the target object appears to “pop out” without search. If the target item

does not possess a distinguishing primary feature, then the model must resort to a serial

search process much like Neisser’s (1963) simple search model. Hence, the model asserts

an initial parallel search followed, if necessary, by a secondary serial search.

This model can explain all of the preceding experimental observations except (#9)

that a person can find a target more quickly when there is a predictable structure to a visual

12

scene.

Guided Search Model.

Cave and Wolfe’s (1990) guided search model asserts a slightly different

combination of parallel and serial processes. In the guided search model, an activation

score is calculated for each display object in an early, parallel processing stage. The

activation score combines target-driven and display-driven contributions. The target-driven

contribution is a measure of how similar the object is to the anticipated target along various

stimulus dimensions. The display-driven contribution is a measure of how unusual the

object is in the display along various stimulus dimensions. These stimulus dimensions

correspond roughly to the primary features in Treisman’s feature integration theory.

This activation score is computed for every item in the display in an early parallel

processing stage, which is followed by a serial processing stage in which items are

evaluated in order of their activations. The object with the highest activation score is

evaluated first, followed by the object with the next highest activation score, and so forth.

The sequence of evaluation stops either when the target is found or when all items above a

threshold or criterion activation level have been examined. This threshold can be varied

depending on task requirements. An additional detail is that a tiny bit of noise, or

variability, is added to each activation before ordering them; as a result, even if the target

item has a slightly higher activation than some similar nontargets, in the final ordering those

nontargets might get ranked higher and evaluated earlier in the serial stage.

Like the feature integration model, this model can also explain all of the preceding

experimental observations above except (#9) that a person can find a target more quickly

when there is a predictable structure to a visual scene.

It is interesting to note that Cave and Wolfe used a computer program to compute all

of the activation scores for all of the visual objects in their guided search model, and to

generate the model’s predictions. Doing so, they demonstrated how computational

13

cognitive modeling may be the most practical approach to building simulations of human

visual search, simulations that will need to incorporate many complex interacting systems.

Summary

This section presented three visual search models: Neisser’s simple search model,

Treisman’s feature integration theory, and Cave and Wolfe’s guided search model. All of

these models discuss the perceptual, cognitive, and motor processes involved in visual

search. Neisser proposed a simple serial search strategy. Treisman and Cave and Wolfe

account for preattentive processing and combine both serial and parallel consideration of

visual objects. But something is missing from all three models: Though all of the models

the models assume that eye movements will take place, none of the models explicitly

predict or account for them; instead, they discuss the “focusing of attention,” which may or

may not correspond to eye movements. As mentioned earlier, there seems to be a

separation between the literature discussing the cognitive processing involved in visual

search and the literature discussing eye movements. Theories pertaining to eye movements

and eye movement programming will be presented next.

2 .2 .3 The Programming of Eye Movements for Visual Search

Humans perceive their visual environment via light that enters the eyeball through

the cornea, the transparent front surface, passes through a lens, and falls on the retina, the

thin, light-sensitive surface that lines the inside back of the eyeball. The retina contains

millions of receptor cells known as rods and cones. There is a small area on the retina

opposite the cornea, the fovea, in which the rods and cones are most dense and thus

resolution of visual information is the greatest. The fovea corresponds to a field of view

that is roughly circular and roughly two degrees of visual angle in diameter. Around the

fovea, resolvability tapers gradually.

When conducting a visual search, a person moves his or her eyes to get different

14

areas of the visual scene into the fovea (to foveate different areas), so that those areas can

be examined with greater precision. In a nonmoving scene, these eye movements will be

saccades, quick, ballistic movements, typically lasting about 5 to 30 msec and separated by

saccadic latencies of at least 200 msec (Rosenbaum, 1991). The lack of eye movement

between two successive saccades is by default a fixation, during which visual information

is gathered. Saccades have two main features: direction and extent. Saccades are typically

synchronized so that the same image will fall into the fovea of both eyeballs.

There is an extensive literature of theories regarding the preparation, or

programming, of eye movements (Fisher, Monty & Senders, 1981; Monty & Senders,

1976; Rayner, 1992; Senders, Fisher & Monty, 1978). One basic question that these

researchers ask is how and when the features (direction and extent) of a saccade are

programmed. Two major opposing ideas regarding high level control of saccade

programming have been proposed, global control and local control. Under global control,

saccades are programmed in advance using strategies that are based on the structure of the

visual field and the task. Under local control, saccades are programmed in response to

visual information that becomes available during task execution. Enough evidence

supports both ideas, however, to suggest that saccade programming is both strategy-driven

and feature-driven.

It is easy to imagine that both strategy and perceptual features contribute to the

programming of saccades. A person looking for a hardware store while riding a city bus,

for example, will make strategy-driven saccades to look at each storefront. But perceptual

features (such as color, size, or shape) will guide the eyes to the sign identifying each

store.

Feature-driven theories have been proposed for a variety of tasks. Antes (1974)

and Loftus (1976) studied how people accomplish a picture-viewing task, and proposed

that eye movements are programmed based on perceptual features in the visual field.

Williams (1966a) studied how people accomplish a visual search task, and also concluded

15

that peripherally available perceptual information can be used to direct the gaze.

Feature-driven models of saccade programming can be further separated into (a)

direct moment-to-moment control models, which use features gathered during one

fixation to program the features of the very next saccade, and (b) indirect local control

models, which use features gathered during the last several fixations to gradually modify a

scan path of saccades. Prinz, Nattkemper, and Ullmann (1992) made this distinction and

collected data that support the idea that people use direct moment-to-moment control.

Other researchers have emphasized the strategy-driven component in the

programming of eye movements for visual search. Neisser (1976) asserted that people use

a stored pre-programmed plan or a schema to program eye movements, but that the schema

can be influenced by both perceptual information and other task details gathered during

schema execution.

Russo (1978) also emphasized the contribution of strategies. He studied the

relationship between eye movements and cognitive strategies to account for the time course

of cognitive processes that gives rise to the interval between saccades. Russo points out

that eye movements themselves take only about 30 msec, but are separated by about 200

msec of no movement; he emphasizes that a good model should account for all cognitive

processing occurring during the 230 msec between successive saccade initiations.

Eye fixations serve only to acquire the information needed to execute a
given cognitive strategy. Therefore, “interpreting” eye fixations should
imply identifying the underlying cognitive strategy. Instead, the use of eye
movements to study cognitive processes has been characterized by sterile
analyses based exclusively on summary statistics, such as fixation
frequency, spatial distribution, and mean duration.... Rather, eye
movements should be aggregated into meaningful cognitive units or
examined for interpretable sequential patterns.... Because eye movements
are always directed by the active cognitive process, an explanation of the
eye movements must rely on an understanding of the controlling cognitive
strategy. (Russo, 1978, p. 109)

Russo emphasizes strategy-driven analysis, but does not claim that such analysis can

exclusively account for eye movements. He proposes a stage model that incorporates (a)

strategies, (b) peripherally visible information, and (c) information gathered from previous

16

fixations, but not necessarily the immediately prior fixation. The model uses all three

sources of information to program each saccade.4

Other researchers have validated such an integrative explanation. Cohen (1981),

for example, provided evidence that people use schemata that are influenced by perceptual

features.

A good model of visual search should account for all nine of the basic visual search

phenomena enumerated in the previous section. A good model should also account for eye

movements, strategy-driven and feature-driven aspects of visual search, and be explicit

regarding whether the feature-driven component of the search assumes direct moment-to-

moment control (in which each fixation can influences the very next saccade) or indirect

local control (in which the last several fixations influence the next saccade). Though a great

deal of work has been done to account for reaction time and eye movement data, there is

not yet a model of visual search that explicitly accounts for all of these processes and all of

the data.

2 .2 .4 Tools for Predicting Visual Search of Computer Interfaces

If an empirically validated model of the perceptual, cognitive, and motor processes

involved in visual search did exist, it could be used to predict how long a person would

take to find something on a computer screen. This would be very useful to interface

designers. Several researchers have already developed automated techniques for predicting

aspects of visual search in human-computer interaction tasks (Lohse, 1993; Sears, 1993;

Tullis, 1988).

Tullis (1988) built a tool called the Display Analysis Program (DAP) that takes as

input an alphanumeric computer screen layout and analyzes the layout with respect to

4This is a particularly interesting model because the menu search models presented later in
this dissertation also combine all three sources of information to predict eye movements.

17

grouping, density, and layout complexity. DAP predicts the time required for a user to find

any object on the screen based on those input parameters. DAP cannot take a specific

search task as an input, but instead predicts one mean search time per display. Though

DAP has predictive power, it says nothing and make no claims about the underlying

processes involved.

Lohse (1993) developed a system called Understanding Cognitive Information

Engineering (UCIE) that predicts the time required to answer a specific question based on

information presented in a line graph, bar graph, or table. He attached timing parameters to

eye fixations and other component processes. UCIE predicts total task execution time by

summing the time required for all component tasks. Unlike DAP, UCIE makes some

claims and assumptions about perceptual, cognitive, and motor processes involved.

Though UCIE might generalize to other visual search tasks, it was only built and validated

for graphs and tables. It does not address more general visual search tasks that arise when

using a computer.

Sears (1993) developed a metric called Layout Appropriateness (LA) that can be

applied to many computer search tasks. LA evaluates a screen layout with respect to how

well it supports efficient execution of a task specified by the analyst. The tool is based on

the human factors method called link analysis, which is used to determine the optimal

placement of equipment in a room. In link analysis, a designer defines links between

pieces of equipment that a person will need to use in consecutive order, and labels each link

with how frequently that movement will need to be made. The designer then determines

the optimum placement of equipment to minimize the overall distance that a person will

need to travel while using the equipment. Sears’ tool works similarly, and recommends

where to place visual objects on a screen to reduce the distance the cursor and the eyes will

need to travel while accomplishing a specific task. One shortcoming with LA is that it

reduces the distances the eyes will need to travel but not the number of fixations required,

which might thus result in little overall time savings because eye movements are fast

18

compared to fixations. Another shortcoming is that it does not simulate the perceptual,

cognitive, and motor processes required for a task, but stays on a higher level of analysis.

It does not predict how long a person would take to accomplish a task, but just compares

each layout against a theoretically LA-optimal layout.

The tools built by previous researchers suggest that even better predictive tools

could be built, and that they would be very useful. Such tools could be used to predict

how long a person would take to find something on a computer screen, such as an item on

a pull-down menu. The next section delves into this specific subproblem—visual search of

pull-down menus.

2.3 Menu Search

Ever since computers advanced to where the user could interact directly with the

machine via a keyboard and video display terminal, menu systems have been used to

visually inform the user of the available command options at any point in time, and to

enable the user to select one of the options. Computer menus are one of the most important

visual components of contemporary graphical user interfaces, which incorporate all sorts of

menus.

Menus pervade contemporary computer systems. Most textbooks on human-

computer interaction or interface design and analysis have a chapter dedicated to the topic

(such as Mayhew, 1992; Shneiderman, 1992). Most web pages contain a menu in one

form or another; in a sense, every web page that contains links is a menu, and every link is

a menu option. Pull-down menus are used extensively by most contemporary computer

operating systems. For example, menus are the starting point for launching applications in

Microsoft Windows (see Figure 2.2, left), and are used by most computer programs that

run on the Apple Macintosh (see Figure 2.2, right).

Computer menus pervade life in the United States. Computer menus are used in

bus information kiosks in downtown Portland, Oregon; computer menus have replaced the

19

Figure 2.2. On the left, the Microsoft Windows NT “Start”
menu, opened millions times across the world every workday.
On the right, the standard “File” menu that appears in most
Macintosh applications.

old wall-mounted building directories in New York City office buildings; computer menus

appear on new televisions across the country when the viewer tries to adjust the picture

quality or other settings using the remote control. At many restaurants, cashiers and

waiters enter food orders by finding the items on computer menus.

Auditory computer menus also pervade life in the United States, menus such as

those encountered when calling an airline (“Press 1 to make a reservation, press 2 for flight

information...”). Auditory menus are discussed by Resnick (1993), Raman (1997), and

others. But most computer menus are visual menus, and thus require visual search.

2 .3 .1 Menu Design Guidelines

Researchers have proposed many guidelines to help people design menu systems

that are efficient and easy to use (for example, Galitz, 1993; Mayhew, 1992; Shneiderman,

1992; Smith & Mosier, 1986). The guidelines are often based on empirical studies that

determine which design choices result in superior performance. Sometimes the guidelines

20

are based on common practice or supposition. This section will present a comprehensive

list of guidelines that has proposed by Mayhew (1992). The list seems particularly useful

to designers because of its level of detail and the directness of its recommendations. Smith

and Mosier (1986) provide an equally useful but more detailed set of guidelines. Galitz

(1993) provides a list that is too detailed, and almost reads as if it were a design

specification. Shneiderman (1992) provides a list that is too vague.

To explain how these guidelines might help a person use a menu more quickly and

easily, the guidelines can be examined in terms of the menu usage subtasks they are likely

to affect. Subtasks in using a menu include:

1. Decide if the menu can be bypassed entirely by using a shortcut key. If
not, continue...

2. Open the menu and/or move your gaze to the menu.

3. Figure out where to look next in the menu, and move your gaze there.

4. Find the best match (either an identical match or a close approximation of
the target).

5. Figure out how to select the found item. For example, figure out exactly
where to point or which key to press.

6. Select the desired item, and confirm that you successfully selected it.

7. If necessary, navigate through a series of menus.

8. Learn the menu items as you use the menu.

Menu design guidelines proposed by Mayhew (1992) are shown in Figure 2.3. Also

shown are the subtasks that each guideline is likely to help a person accomplish more

quickly or easily.

Examining each guideline in terms of the perceptual, cognitive, and motor

processing it is likely to influence should help the field of HCI (a) to better understand the

usefulness and validity of each guideline, and (b) to propose new guidelines based on an

understanding of the perceptual, cognitive, and motor processing that takes place during

menu selection.

21

Search-related subtasks

Selection-related subtasks

Menu Design Guidelines
Bypass
menu

Open
menu

Figure out
where to
look next

Find
best
match

Figure
out how
to select

Select
item

Navigate
through
hierarchy

Learn
menus

Establish conventions for menu design and apply them
consistently on all menus within a system.

X X X X X X X X

Allow direct access through type-ahead, menu screen
names, and user-created macros for expert users.

X

Use permanent menus when possible. Reserve pop-
up or user-invoked menus for high-frequency users
and situations where screen real estate is scarce.

X

On full-screen text menus, present menu choice lists
vertically.

X X

X

Make menu choice labels brief, consistent in
grammatical style and placement, and matched with
corresponding menu titles.

X X

Create logical, distinctive, and mutually exclusive
semantic categories with clear meanings.

X X X

Order menu choice labels based on the user and task
variables.

X X X

Either gray out or delete inactive menu items,
depending on user experience and the input device.

X X X X

Use menu choice descriptors if choice labels may not
be clear and unambiguous.

X X

Provide menu selection defaults when possible. X

Use cursor selection for short menus on keyboard-
driven menu systems with casual use. Use
mnemonically lettered selection codes for longer
menus and/or high-frequency users. Let the user point
if there is a pointer.

X X

Consider pie menus when the choices lend
themselves to a pie format.

X X X

Provide menu selection feedback. X

Make menu hierarchy shallow and broad, if possible. X

Allow context labels, menu maps, and place markers
as navigation aids in complex menu systems.

X

Facilitate backwards navigation. X

Distinguish between “Choose one” and “Choose
many” menus.

X X

Match menu structure to task structure. This guideline is too vague.

Allow users to tailor menu structure to task structure. There is no clear benefit from this guideline.

Figure 2.3 Menu design guidelines proposed by Mayhew (1992), and menu usage
subtasks. The subtasks that are part of the processes of search and selection are
indicated at the top. An X indicates that accomplishing the subtask will probably
be easier when the guideline is followed.

2 .3 .2 Experimental Phenomena in Computer Menu Search

This is a discussion of phenomena that have been observed in experiments that

involve finding and selecting an item on a computer menus. The review is limited to

22

experiments that emphasize the visual search component of the task by reducing the task to

(a) finding the target and (b) selecting the target. This review will exclude studies that

introduce subtasks such as navigating through more than one menu or deciding which

menu item provides the best semantic match with the target. Rather, the review will only

include research that pertains to the search of a single menu for a known target item.

Most of the menu studies reviewed have an experimental procedure similar to that

of the general visual search tasks discussed in the previous section. The experimental

procedure is as follows:

1. The participant is presented with a precue of the target menu item on the
computer screen.

2. The target precue disappears.

3. The menu appears on the screen, and the clock starts.

4. The participant finds and selects the target item, and the clock stops.

The usual experimental variations include exactly how the participant is precued,

what are used as menu items, the ordering of the menu items, the number of items in the

menu, the size and spacing of menu items, whether or not menu items are grouped, and

how the participant indicates that they have found the target item (usually with a mouse

click or a key press). The dependent variable of interest is usually selection time, measured

from when the menu appears to when the participant has selected the correct target item.

Another important dependent variable is number of errors.

The location and duration of eye fixations during task execution are emerging in the

literature as another dependent variable. But because of the large amount of (a) data

generated by eye tracking devices, (b) data processing required in order to report these

variables, and (c) noise in fixation locations, it is very challenging to record and summarize

these data in a manner that reveals fundamental aspects of visual search. Nonetheless,

several researchers have braved the flood of data and distilled some interesting

observations, including Crosby and Peterson (1991), Aaltonen, Hyrskykari and Räihä

23

(1998), and Byrne, Anderson, Douglass, and Matessa (1999). The eye movement data

reported by Aaltonen et al. and by Byrne et al. are subject to Russo’s (1978) criticisms and

are reported as “summary statistics, such as fixation frequency, spatial distribution, and

mean duration” rather than “aggregated into meaningful cognitive units or examined for

interpretable sequential patterns.” The data reported by Crosby and Peterson, however, are

what Russo seeks—interpretable sequential patterns. All three studies are informative

nonetheless, and will be discussed below.

A review of the literature reveals eight basic phenomena that are consistently

observed from study to study. There is a close parallel between these phenomena and

those that have been observed in more general visual search tasks, which were summarized

in Section 2.2.1, “Experimental Observations”. These phenomena include:

1. People can find a target more quickly when it appears higher (physically
closer to the top) in the menu (Card, 1983; Nilsen, 1991; Perlman, 1984;
Somberg, 1987; Somberg, Boggs & Picardi, 1982).

2. People can find a word more quickly in a vertical list than in a horizontal
list (Backs, Walrath & Hancock, 1987; Wolf, 1986; Woodward, 1972).

3. People take more time to find a target item in a longer menu than in a
shorter menu. This even holds true when the target items are in the same
position of two randomly ordered menus (Nilsen, 1991; Perlman, 1984;
Somberg et al., 1982).

4. People can find a target more quickly when menu items are alphabetically
or numerically ordered than when they are randomly ordered (Card,
1982; Perlman, 1984; Somberg, 1987).

5. With practice, people can learn to find a target in an unordered menu
almost as quickly as in a sorted menu (Card, 1982; Somberg, 1987).

6. People can search some kinds of menu items more quickly than others,
such as simple icons more quickly than complex icons (Arend, Muthig &
Wandmacher, 1987; Bednall, 1992; Byrne, 1993; Landauer & Nachbar,
1985; Perlman, 1984; Vartabedian, 1971; Williams, 1988).

7. When searching unordered menus, people adopt somewhat systematic
top-to-bottom scan patterns (Aaltonen et al., 1998; Byrne et al., 1999;
Crosby & Peterson, 1991).

8. People do not fixate every item along the way to finding the target
(Aaltonen et al., 1998; Byrne et al., 1999; Crosby & Peterson, 1991).

24

Studies illuminating each of these eight basic phenomena will now be presented.

1. Higher items are faster.

A systematic increase in selection time as a function of the Serial Position of the

target item, referred to as a Serial Position effect, appears across all positions in randomly

ordered menus, but only for the topmost menu items in ordered menus and positionally

constant menus.

In randomly ordered menus, Somberg et al. (1982) found a Serial Position effect of

140 msec per position for words and Nilsen (1991) found an effect of about 100 msec per

position for single numerical digits.

In alphabetically or numerically ordered menus, Somberg (1987) and Perlman

(1984) found a Serial Position effect, but only for items near the top of the menu, and

Nilsen (1991) found a logarithmic Serial Position effect.

Card (1983) presented his participants with an initially randomly ordered menu but

kept the ordering constant for a total of forty-three trials, resulting in something between

randomly ordered and positionally constant menus. Card found a Serial Position effect of

only 26 msec per position.

It should be pointed out that in none of these studies did the experimental design

motivate the participant to start the search at the bottom of the menu, as might be the case

with menus that open from the bottom, such as the Microsoft Windows “Start” menu

shown in Figure 2.2. For such menus, this observation might not generalize.

2. Vertical is faster than horizontal.

Backs et al. (1987) demonstrated that people can select a target item more quickly in

a vertical menu than in a horizontal menu. They presented participants with menus of either

one vertical column or multiple horizontal rows, and observed that participants took on

average 150 msec less to select a target item in the vertical menu.

25

Wolf (1986, cited by Tullis, 1988a) observed that using vertical lists alphabetized

within each column, rather than using horizontal lists, resulted in 37% less time being

required to locate a target.

Woodward (1972) asked participants to compare pairs of 3-digit numbers in

different arrangements presented on paper and to respond as to whether or not the two

numbers in each pair were identical. He observed that response time was significantly

faster when one number was directly above the other (as in vertical menus) than when the

numbers were arranged side-by-side on the same line (as in horizontal menus).

3. Longer menus take longer.

This phenomena is not surprising because in a longer menu there will be more

menu items that need to be examined. Perlman (1984) observed average selection times

ranging from 1.26 seconds for 5-item menus, to 2.23 seconds for 20-item menus. Nilsen

(1991) observed average selection times ranging from 0.57 seconds for 3-item menus to

0.99 seconds for 9-item menus.

Researchers have also observed the more surprising phenomenon that, when the

target item appears in the same position in two different randomly ordered menus of

different lengths, more time is required to select a target from the same position of a longer

menu. But this only seems to be the case when the participant can predict the length of the

menu in advance, as when experimental trials are blocked by menu length. Perlman

(1984) observed that selection time for the same menu position increased by about 0.1

seconds each time the menu length was increased by 5 items. Nilsen (1991) observed that

selection time for the same menu position increased by about 0.15 seconds each time the

menu length was increased by 3 items. Both Perlman and Nilsen blocked their experiments

by menu length. Both Somberg (1982) and Byrne et al. (1999) did not block by menu

length (hence the participant could not predict the menu length from trial to trial), and they

did not find a consistent, significant increase in selection time for the same position in

26

randomly ordered menus of different lengths.

4. Sorted is faster than randomly ordered.

Card (1982) asked participants to select a target item from a menu of command

names presented in different orderings. He observed that, in early trials, participants

tended to find the target more quickly when the menu was ordered either alphabetically

(0.81 sec) or by function (1.28 sec) than when the menu was ordered randomly (3.23 sec).

Perlman (1984) asked participants to find a word in a list. He presented both sorted

and randomly ordered lists, and observed that participants could find a target significantly

faster in sorted lists (1.45 sec) than in randomly ordered lists (2.01 sec).

Somberg (1987) presented participants with menus of twenty words that were

either alphabetically or randomly ordered, and observed that people performed significantly

faster with alphabetically ordered menus.

5. Positional constancy is fastest.

If the positions of menu items are held constant across trials, with practice people

can find a target in a randomly ordered menu as quickly as in a sorted menu.

Card (1982) asked participants to select a target item from a menu of command

names presented in different orderings. Each ordering was held constant across all trials.

He observed that in early trials participants tended to find the target more quickly when the

menu was ordered alphabetically than when the menu was ordered randomly. But he also

observed that in later trials the relative advantage of alphabetized menus nearly disappeared,

and participants could select items almost as quickly in the randomly ordered menu.

Somberg (1987) presented participants with menus of twenty words that were

randomly ordered. For some participants, he kept the initially random positions constant

throughout the experiment. For other participants, he re-ordered the menu randomly for

every trial. He observed that on the first trial people took about the same amount of time to

27

select the target item (2780 msec), but that after an average of just one presentation, people

could select the target more quickly from a positionally constant menu (2090 msec) than

from a randomly re-ordered menu (2690 msec). After twenty trials for each position,

performance for randomly re-ordered menus stayed relatively constant but performance for

positionally constant menus improved (to 1400 msec).

6. Some menu items are faster than others.

When scanning a menu, the nature of the menu items sometimes affects how

quickly a person can find the target. For example, people can search through numbers

more quickly than words, and some kinds of words or icons more quickly than others.

But of course not all features affect search time. Whether items are in upper versus lower

case, for example, does not significantly affect search time.

Comparing the search of numbers versus words, Perlman (1984) presented

participants with menus of either the Arabic numbers from 1 to 20, or of well known

words drawn from Battig and Montague (1969). Perlman observed that, on average,

participants selected the numbers (1.56 sec) more quickly than words (1.89 sec). Landauer

and Nachbar (1985) presented participants with menus of either Arabic numbers (1 to 4

digits long) or words randomly chosen from an online dictionary (4 to 14 characters long).

Participants selected the numbers more quickly than the words.

Comparing different kinds of icons with text-only menus, Arend, Muthig and

Wandmacher (1987) observed that people could find a target in a menu of distinctive icons,

each with a distinct primary feature, more quickly (1173 msec) than they could find a target

in a menu of words (2011 msec) or a menu of representational icons, icons whose

meanings are represented in smaller details (2004 msec). Similarly, Byrne (1993)

observed that participants could find a target icon more quickly when all icons are simple

rather than complex; this is analogous to the “target pop-out” phenomena mentioned in

Section 2.2.1.

28

However, it is not always possible predict which kinds of menu items can be

searched faster. It is not clear, for example, how upper versus lowercase text of menu

items affects search time. There is empirical evidence (reviewed briefly by Bednall, 1992)

that lowercase text can be read more quickly than uppercase text, but Vartabedian (1971)

observed that uppercase lists could be searched more rapidly than lower case lists. Other

researchers observed no clear advantage to upper or lowercase. Bednall (1992) observed

that participants took the same amount of time to search uppercase and mixed case menus.

Williams (1988) observed that there was no clear time advantage between upper or

lowercase menu items.

7. People adopt somewhat systematic scan patterns.

Researchers have used eye tracking devices to capture eye movements during menu

search tasks, and found that saccade scan paths tend to be somewhat systematic (that is,

regular and orderly). The systematicity manifested itself in various ways.

Crosby and Peterson (1991) presented participants with a screen containing three

columns of randomly ordered three-digit numbers, and asked participants to find a number

in the list. Crosby and Peterson categorized the visual scan path used for each trial, and

found that the college student participants exhibited a systematic scan path on 66% of the

trials. The scan path was usually top-to-bottom, but was sometimes bottom-to-top for the

second column.

Aaltonen et al. (1998) presented participants with pull-down menus containing

names or concepts grouped by category, and asked participants to find specific targets in

the menus. Participants tended to scan menus with a series of upward and downward

sweeps—sequences of eye movements in the same direction—that decreased in both

duration and length throughout the trial. Downward sweeps were more common that

upward sweeps.

Byrne et al. (1999) presented participants with pull-down menus containing

29

numbers or letters, randomly re-ordered for each trial, and observed that (a) the initial

fixation was usually on one of the top few menu items, (b) more fixations were required to

find a target lower in the menu, and (c) people tended to not fixate items below the target

position.

8. People do not fixate every item.

The same researchers found that people scanning a randomly ordered menu do not

fixate every menu item on the way to finding the target, but instead jump over several items

at a time.

Crosby and Peterson (1991) found that, after practice, participants were able to find

the target item with fewer saccades than would be required if they fixated every item.

Crosby and Peterson also report a pictorial representation of one specific scan path that was

recorded, and it can be seen that the participant systematically fixated every third or fourth

item.

Aaltonen et al. (1998) found an average vertical saccade distance of 2.21 menu

items, which suggests that participants did not fixate every item. Though this average

saccade distance might have been inflated by saccades in which participants jumped over

items to get to the next group, a pictorial representation of two specific scan paths also

suggests that participants did not fixate every item.

For menus containing nine or twelve items, Byrne et al. (1999) found that

participants made an average of 2.5 fixations before selecting the target when the target

appeared in the first position but that, on average, participants made only an additional 0.2

fixations per Serial Position for targets further down in the menu. Hence, for items below

the fourth position, people exhibited too few fixations to have fixated all of the items along

the way to the target.

30

Other observations

Researchers have studied other factors that relate to how people search for a known

item in a single menu, such as the effects of arranging menu items in groups, (Bednall,

1992; Hollands & Merikle, 1987), removing temporarily disabled menu items completely

versus just lightening the text (Francik & Kane, 1987), and varying the distance between

adjacent menu items (Nilsen, 1991; Williams, 1988). But the effects of these and other

factors are not as clear or are not confirmed by duplicate studies as are the above five

phenomena. The list above represents the current understanding of what will be reliably

observed when a person selects a known item from a single computer menu.

2 .3 .3 Proposed Hypotheses for Menu Search

Besides making observations about how people search menus, researchers have

proposed hypotheses relating to menu search. This review will only include hypotheses

that attempt to explain fundamental underlying principles of human performance that come

into play when people search menus. A statement such as “People search vertical menus

more quickly than horizontal menus” will not be included as a hypothesis since this is more

of a summary of observed data. As in the previous discussion regarding observed data,

this review will only include hypotheses that relate to visual search when the target item is

known in advance. This review excludes hypotheses that discuss how the search process

is affected by processes such as deciding which menu item best matches the precued target

item. Hypotheses that have been proposed, including several that conflict, are as follows:

1. People use recognition memory for menus, and recall memory for
command line interfaces.

2. People process one menu item at a time and hold their gaze on each item
as they consider it.

3a. People search systematically from top to bottom.

versus

3b. People search randomly.

31

versus

3c. Search is both random and systematic.

4a. People terminate the search when they find the target.

versus

4b. People exhaustively examine every item on the menu before deciding
which is the target.

5a. People do not begin the process of selecting a target item until they have
found the target.

versus

5b. People overlap the search and selection processes.

Each of these hypotheses will now be discussed in greater detail, including who

proposed each one, observational data that supports it, and a brief critique of each

hypothesis.

1. People use recognition for menus and recall for command lines.

To support a belief that menu interfaces are superior to command line interfaces,

some researchers point out that humans are better at recognition than recall, and theorize

that people use recognition for menu interfaces and recall for command line interfaces (for

example, Galitz, 1993, p. 209; Mayhew, 1992; Paap & Roske-Hofstrand, 1988). The

hypothesis that people use recognition for menus is relevant to this project because it bears

on the ecological validity of the assumption that a target menu item can be known in

advance. In all of the menu models built in this research project, it is assumed that the

person knows the target in advance. It could be argued that people using menus do not

recall the target menu item in advance but instead recognize it only when they see it, and

thus the models are built on a flawed reproduction of a task. A response to such a criticism

would be to point out that the initial distinction—that people use recognition for menus and

recall for command lines—is itself flawed.

In classic recognition and recall tasks, a participant is typically given a list of words

to learn followed by a test. The test for the recognition task differs from the test for the

recall task. In the recognition test, the participant is given a list that contains words from

32

the original list, as well as distractor (non-target) words, and must identify which words

are from the original list. In the recall test, the participant is asked to recall the list with no

retrieval cues other than an indication of which list to recall. In terms of proportion of

correct responses, people are much better at recognition tasks than recall tasks (Klatzky,

1980).

But it is not clear that these experimental tasks of recognition and recall map to the

computer tasks of using menu interfaces and command line interfaces as readily as some

researchers would like to believe. Issuing a command to a computer via a menu or a

command line is a very different task than merely reporting words that were previously

observed, especially if the person using the computer is accomplishing a piece of work and

knows the steps required to accomplish the task. Mayes, Draper, McGregor and Oatley

(1988) observed that when people were in the middle of accomplishing a task, they could

recall menu items needed to accomplish a task without looking at the menu, even menu

items they could not recall when asked to list the contents of menus. These results

demonstrate that experienced users recall commands based on retrieval cues that come from

the execution of the procedural knowledge, and know what they are looking for when they

open a menu. There is little or no evidence that experienced users use recognition for

menus and recall for command lines.

3. People serially process one menu item at a time.

Researchers have proposed that people conduct a serial, nonoverlapping scan of

menu items. These hypotheses are proposed to account for the Serial Position effect,

discussed earlier. Norman (1991) proposed that people find the next item, encode it,

decide if it matches, and proceed to the next item if the previous did not match. Somberg

et al. (1982) and Anderson, Matessa, and Lebiere (1997) made similar proposals.

Vandierendonck, Van Hoe, and De Soete (1988) even went so far as to assert that people

hold their gaze on each menu item, one item at a time as they consider each item; but this

33

was evidently not based on analysis of eye movement data. Card (1982; 1983) also

assumed that people process one item at a time; this assumption was carried over from the

early mathematical models of visual search on which he based his models.

4a. People search systematically from top to bottom.

Researchers have proposed that, to examine a vertical menu, people begin their

search at the top of the menu and move their gaze down across successive menu items.

Observing a nearly linear Serial Position effect, several researchers concluded that people

search menus systematically from top to bottom (Nilsen, 1991; Somberg, 1987; Somberg

et al., 1982; Somberg & Picardi, 1983). As well, MacGregor and Lee (1987) interpreted

menu selection data presented by Card (1982; 1983) to explain how a sequential search

could account for Card’s data.

4b. People search randomly.

Other researchers have proposed that when people search a vertical menu, they

move their eyes randomly up and down the list. Card (1982; 1983) observed that the

cumulative probability of selecting a target item within a given amount of time increases as

time increases, and at a rate that can be explained by a random search model and not by one

specific systematic model. Other researchers have restated Card’s assertion that search is

entirely random (such as Giroux & Bellau, 1986; Parton, Huffman, Pridgem, Norman &

Shneiderman, 1985) but without offering new rationale or data. MacGregor and Lee

(1987) argued that Card’s conclusion does not necessarily follow from his observations.

There are also other problems with Card’s conclusion, which will be enumerated here.

Problem 1: As discussed at the beginning of this chapter, Card’s models are

derived from the visual search of menus based on models of visual search for enemy

airplanes and warships, which assume visual search in an unstructured visual field. Since

a menu is a highly structured visual field, these mathematical models do not necessarily

34

apply to menu search. Even though the trends in the data for both structured and

unstructured visual fields are the same, the same models will not necessarily account for

both sets of data.

Problem 2: Card’s conclusion of random search relies on the assumption that

people will consider only one menu item at a time. The original visual search models for

search in an unstructured field assume that people consider only one fixation at a time.

Card’s models carry forward this assumption, but also assume that only one menu item

will be processed per fixation, and thus assume serial processing of menu items. But in

Card’s task, when menu items can fall closely together (about 0.5˚ of visual angle apart), it

is possible that more than one menu item could be examined at the same time. So the serial

processing assumption may not apply, but his conclusion of random search relies on this

assumption.

Problem 3: Card concluded that people searched randomly based in part on

observing that, during search, participants tended to make roughly the same number of

upward and downward eye movements. But in Card’s task the to-be-selected item

appeared above the menu at the same time as the menu itself, and at the same time that

timing started. The participant did not know the target item in advance and may have spent

time and eye movements getting the target item into memory even after beginning the

search. In experiments run by other researchers—experiments that gave rise to Serial

Position curves with slopes that suggest systematic search—the participant knew the target

item before opening the menu and before timing started, which perhaps more closely

resembles a real-world menu task in which the participant knows the target in advance.

Card’s task was perhaps less of a search task and more of a matching task in which

participants compared menu items to the to-be-selected item. In fact, Aaltonen et al. (1998)

ran a menu experiment in which the precue stayed visible after the menu appeared, collected

more precise eye movement data, and observed that sometimes the gaze returned to the still-

visible precue during search.

35

4c. Search is both random and systematic.

Perhaps the most plausible explanation is that visual search of menus is both

random and systematic. This explanation can perhaps be derived from a hypothesis

proposed by Williams (1966b), that people use a systematic process with randomness

superimposed upon it. Another hypothesis, proposed by Arani, Karwan and Drury (1984)

is that people attempt to search in a systematic manner, but forget all of the places where

they have already looked, which introduces randomness. Another menu selection model

that incorporates both random and systematic search is presented in this dissertation, which

was presented in Hornof and Kieras (1997).

5a. People terminate the search when they find the target.

Researchers have proposed that when people know the exact target that they are

looking for in advance, they terminate their visual search as soon as they have found the

target. Based primarily on the Serial Position effect, Somberg (1982), Somberg and

Picardi (1983), and Nilsen (1991) proposed that people terminate their search as soon as

they find the target. Eye movement data collected by various researchers seems to confirm

this assumption (Aaltonen et al., 1998; Byrne et al., 1999; Crosby & Peterson, 1991).

5b. People exhaustively examine every item on the menu.

Other researchers have proposed that, even when people know the exact target item,

they exhaustively examine all menu items before selecting the target.

Lee and MacGregor (1985) offer a general approach for predicting menu selection

time across a series of menus that allows for either a self-terminating or exhaustive search

strategy within each menu. Their model leaves search strategy as a free parameter,

allowing for either a self-terminating or exhaustive strategy. MacGregor, Lee, and Lam

(1986) extended their previous model to assert that a self-terminating search occurs when a

single menu item is highly likely to be recognized as the target, but that an exhaustive

search occurs when no single item is highly likely to be recognized as the target.

36

MacGregor and Lee (1987) also proposed that even when a person knows the exact

target in advance, they might exhaustively examine all items before deciding on the target.

But MacGregor and Lee were offering this hypothesis mostly to counter Card’s assertion

that a self-terminating random search could best explain a flat Serial Position curve.

MacGregor and Lee argued that this data could also be accounted for by an exhaustive

systematic top-to-bottom search.

6a. Search and selection are independent.

Researchers such as Norman (1991) and Vandierendonck et al. (1988) have

proposed that people do not begin the process of selecting the target item (as with a mouse)

until after they have found it, but do not offer any empirical evidence for this supposition.

Card (1983) also speculates that the two are independent. In analyzing the menu

selection times he observed, he assumes that some of the total selection time is dedicated

exclusively to search, and some exclusively to selection. When plotting the selection times,

he states that “the intercepts for the regression lines” of roughly 1100 msec can be

considered to be “the contribution to the task of the nonvisual search components such as

mouse movement and reaction time.”

6b. Search and selection are combined.

Other researchers have proposed that people combine the processes of search and

selection.

Sears and Shneiderman (1994) proposed a specific, time-consuming combination

of the search and selection processes. They propose that as people “move the cursor down

the menu to the item of interest, the cursor acts as a visual anchor guiding their search.”

But they do not discuss whether or not they observed the participants in their study actually

moving the mouse in such a manner. They did report selection times as fast as 1.75 sec for

the 13th item on the list, which suggests that their participants were not limiting their eye

37

movements (which are fast by nature) by their mouse movements (which are slow by

nature).

Anderson et al. (1997) proposed a menu selection model that contained a similarly

time-consuming and implausible combination of search and selection. To account for

Nilsen’s (1991) menu data, the model assumes that “Subjects tend to move the mouse

down as they scan for the target” and that no mouse movement is required once the target is

located. This theoretical assumption is not supported by the raw selection times, which are

always under 1.7 seconds even for randomly ordered menus of nine items. Selection times

are just too fast for participants to have waited until they completed each mouse movement

before making their next eye movement.

It is doubtful that people constrain their eye movements to be as slow as their hand

movements in a high speed visual search task, and there is no evidence to support this

hypothesis. Since people can move their eyes and their hands independently and in

parallel, it is reasonable to expect that they would find a way to use this ability to optimize

performance.

Though these fast selection times for randomly ordered menus indicate that people

do not move the cursor and their gaze to menu items at the same time, this does not mean

that search and selection are completely independent. A reasonable conclusion is that at a

higher level of analysis, the search and selection processes can be thought of as

independent, but at a lower level of analysis, the two are combined.

2 .3 .4 Many Conflicting Hypotheses

Researchers have proposed many hypotheses about the details of how people select

a known item from a menu on a computer screen. These hypotheses are generally based on

interpretation of data, so sometimes different researchers have proposed conflicting

hypotheses even from the same data. Usually, just one or two of the above hypotheses are

proposed at a time, and the others are held as (sometimes unstated) assumptions, even if

38

the assumptions have not been generally accepted. As a result, many of the conflicts are

still unresolved, and the field of HCI does not have a good theoretical understanding of the

cognitive processes that people use when they select an item from a menu.

This review of previous literature regarding menu selection indicates that, though

much research has investigated menu selection, many questions remain open. As recently

as 1993, in fact, a review of the literature on visual search in human-computer interfaces

(Scott, 1993) stated that “Little is yet known about user search processes in menu

retrieval.”

2.4 Cognitive Modeling

Cognitive modeling is the study and the process of building simulations of human

performance which are referred to as cognitive models. Calling the simulations cognitive

models can lead to some confusion because cognition generally refers to central strategic

and decision processing, and is thought to be separate from the peripheral processes of

perception and action. Action is also referred to as motor processing. In this

dissertation, cognitive models are assumed to account for all three: perceptual, cognitive,

and motor processing.

Cognitive models permit aspects of user interfaces to be evaluated for usability by

making predictions based on task analysis and established principles of human performance

(Card, Moran & Newell, 1983; John & Kieras, 1996). Cognitive models can predict task

execution time based on specification of interface and task, and thus reduce the need for

user testing early in the development cycle. They can reveal underlying strategies that

people use to accomplish a task, and thus help designers build interfaces and interaction

techniques that better complement the strategies. Cognitive modeling has demonstrated its

usefulness in the design and analysis of interfaces through simple KLM models as well

with more complex GOMS models.

An emerging form of cognitive modeling that shows great promise for the design

39

and analysis of interfaces is computational cognitive modeling, in which computer

programs are written to simulate the various perceptual, cognitive, and motor processes

involved in accomplishing a task. One form of computational cognitive modeling is GOMS

modeling using a computer-based interpreter such as GLEAN (Kieras, Wood, Abotel &

Hornof, 1995; Wood, 1993). Another is building models with a cognitive architecture

such as EPIC (Kieras & Meyer, 1997; Meyer & Kieras, 1997a; Meyer & Kieras, 1997b),

Soar (Laird, Rosenbloom & Newell, 1986; Newell, 1990), EPIC-Soar (Chong, 1998a;

Chong, 1998b), ACT-R (Anderson, 1993; Anderson et al., 1997), or ACT-R/PM

(Anderson & Lebiere, 1998). A cognitive architecture is a computational framework for

building cognitive models that simulates and constrains fundamental aspects of human

performance.

The cognitive models presented in Chapter 3 and 4 of this dissertation were built

using the EPIC cognitive architecture. EPIC is particularly well-suited for modeling visual

search because (a) it has a particularly well-developed set of constraints regarding visual

and ocular-motor processing and (b) it uses a multi-match, multi-fire production system,

which means that the cognitive processor can match and fire any number of production

rules in a single cycle.

EPIC’s constraints regarding visual processing include that visual stimuli are less

perceptible when they appear further from the foveal region of the retina. EPIC’s ocular-

motor processing includes simulating the preparation and execution of physical eye

movements. These are important aspects of human performance that will constrain the

search space of models that can be used to explain visual search data.

Other architectures vary with respect to how well the architectures themselves

account for these aspects of visual and ocular-motor processing. Though Soar does not

incorporate visual perceptual and ocular-motor mechanisms at the architectural level, the

architecture has nonetheless been used to model some aspects of visual performance

entirely through the creation and application of Soar operators (Wiesmeyer, 1992).

40

EPIC-Soar of course incorporates visual perception and ocular motor processing at the

architectural level because it incorporates these components from EPIC. But since the

models in this dissertation do not model learning, the learning that is afforded by the Soar

component of EPIC-Soar is not needed.

The visual interface of ACT-R and ACT-R/PM partially accounts for these aspects

of visual and ocular-motor processing. ACT-R and ACT-R/PM’s visual interface assumes

that visual features are available no matter where they appear in the visual field, but that

conjunctions of an object’s features can only be formed when the object is captured in the

“spotlight of attention.” The visual interface also assumes that time is required to shift

attention from one location to another. The spotlight of attention, however, is not linked to

any physical zones on the retina, and it is unclear whether or not the simulated attentional

shifts are intended to represent physical eye movements.

A multi-match, multi-fire production system such as that used by EPIC is preferred

because it means that the cognitive processor will not constrain the overlapping of

perceptual and motor processing that is likely to occur during a high speed visual search.

Soar is also a multi-match, multi-fire production system. ACT-R and ACT-R/PM are also

multi-match, but single-fire. As argued by Meyer and Kieras (1997a; 1997b), people do

not seem to have a central cognitive processing bottleneck of this sort, and so the

architecture should not impose this constraint. A multi-fire production system, for

example, allows one subset of production rules to move the eye throughout the visual scene

as quickly as possible while another subset of rules, in parallel, keeps track of whether or

not the target has yet been seen.

2.5 Conclusion

Visual search is a very important human activity for accomplishing many tasks,

from survival in war to day-to-day computer usage. Much work has been done to collect

data and build models to try to predict and explain how people accomplish these tasks.

41

There are large bodies of work studying general visual search in cognitive psychology,

vision research, and human factors. Visual search of computer menus has sparked debate

in the human-computer interaction literature for decades. And yet, there are no empirically

validated models that explain the perceptual, cognitive, and motor processes involved in

visual search. Accounting for the perceptual and motor processing involved is critical

because these peripheral processes will constrain the assumptions that can be made about

the central cognitive processing involved. Building cognitive models using an existing

computational cognitive architecture such as EPIC holds great promise for accounting for

these basic processes and for the data.

CHAPTER 3

INTRODUCTION TO THE MODELS

This dissertation presents the first empirically validated models of the perceptual,

cognitive, and motor processes involved in the visual search of computer menus. This

chapter discusses the basic components of these models: the cognitive architecture used for

the model-building, the human experiment that the models are based on, the empirical data

collected during the experiment, and the specific inputs to the architecture that are used to

model the data.

3.1 The EPIC Cognitive Architecture

The EPIC (Executive Process-Interactive Control) cognitive architecture (Kieras &

Meyer, 1997; Meyer & Kieras, 1997a; Meyer & Kieras, 1997b) provides a general

framework for simulating a human interacting with his or her environment to accomplish a

task, and is well-suited to model visual search. EPIC resembles the Model Human

Processor (Card et al., 1983), but differs in that EPIC is a precise computational model,

has a programmable production-rule cognitive processor, and incorporates more specific

constraints synthesized from human performance literature.

EPIC consists of a production-rule cognitive processor and perceptual-motor

peripherals. To model human performance aspects of accomplishing a task, a cognitive

strategy and perceptual-motor processing parameters must be specified. A cognitive

strategy is represented by a set of production rules, as in CCT (Bovair, Kieras & Polson,

1990), ACT-R (Anderson, 1993; Anderson et al., 1997), ACT-R/PM (Anderson &

Lebiere, 1998), and Soar (Laird et al., 1986; Newell, 1990) represent procedural

42

43

knowledge. The simulation is driven by a description of the task environment that specifies

aspects of the environment that would be directly observable to a human, such as what

objects appear at what times, and how the environment changes in response to EPIC’s

motor movements.

EPIC models are generative. When all the necessary inputs for a model are

provided to the architecture and the model is run, EPIC interacts with the task environment

and generates (a) a specific sequence of perceptual, cognitive, and motor activities to

accomplish the task and (b) a prediction of the time required to accomplish the task.

EPIC takes as its input:

• The cognitive strategy for accomplishing a task, stored as production
rules in the production memory.

• The availability of each object property for each visual zone, to represent
human perceptual capabilities.

• Details of the task environment, such as when and where objects appear.

EPIC generates as output:

• A detailed trace of the flow of information and control among the various
processors and memories.

• The time required to execute the task.

As shown in Figure 3.1, information flows from the task environment into sense

organs, through perceptual processors, to a cognitive processor (consisting of a production

rule interpreter and a working memory [WM]), and finally to motor processors that control

effector organs that interact with the task environment. All processors run independently

and in parallel. Information processing and motor movement times are held constant across

models, and are based on human performance literature.

A single stimulus in the task environment can produce multiple inputs into a

perceptual processor, which can be deposited in WM at different times. First to arrive in

WM is the detection of a perceptual event, followed later by properties that describe the

event. The perceptual processors are “pipelined.” If an object’s properties begin moving

44

Task
Environment

Cognitive
Processor

Working
Memory

Production Rule
Interpreter

Vocal Motor
Processor

Visual
Input

Auditory
Input

Long-Term
Memory

Ocular
Motor

Processor

Auditory
Processor

Visual
Processor

Production
Memory

Tactile
Processor

Manual
Motor

Processor

Simulated
Interaction

Devices

Figure 3.1. Overview of the EPIC architecture, showing flow
of information and control. The processors run independently
and in parallel. (From Kieras & Meyer, 1997.)

to WM, the arrival of those properties will not be delayed by any other processing. WM

contains these items deposited by perceptual processors, as well as control information

such as the current task goal. At the end of each simulated 50 msec cycle, EPIC fires all of

the production rules whose conditions match the current contents of WM. EPIC allows for

parallel execution of production rules in the cognitive processor, and some parallelism in

each motor processor.

EPIC is particularly well-suited for modeling aspects of visual search because

EPIC, in effect, has eyes that see. EPIC has an ocular motor processor that moves a

simulated gaze to locations in the environment as specified by the executing strategy. The

gaze can be fixed at one point in the task environment at a time. Time is required to prepare

45

and execute an eye movement to a new location. Retinal zones are defined as concentric

circles around the center of the gaze, with sizes typically set as follows: The bouquet (a

radius of 0.25˚ of visual angle), the fovea (1˚), the parafovea, (7.5˚), and the periphery

(60˚). These zones are depicted in Figure 3.2.

bouquet fovea

parafovea

periphery

center of gaze

0.25˚
1˚

7.5˚
60˚

⊗
not in
view

Figure 3.2. The retinal zones defined in EPIC, and typical sizes used in
modeling. Sizes are the radii in degrees of visual angle. The visual
stimulus “⊗” appears outside of the bouquet and fovea, but inside of
the parafovea and periphery.

Recall that one of the inputs to an EPIC model is the availability of object

properties. These parameters define (a) which properties are available in which zones, and

(b) the delay imposed on each property in each zone. The availability of each property of

an object is a function of in which zone the object is located during the current fixation.

Thus, there is a different availability and delay setting for each property for each zone

(bouquet, fovea, parafovea, periphery, and not-in-view). The availability and delay for the

location and text properties, for example, are typically set as follows: The location

property will be available as long as the object is in view, and will take 50 msec to travel

from the retina to the visual processor. The text property will only be available when the

object falls within the fovea, and will take 100 msec to travel from the retina to the visual

processor.

Thus, if during the execution of a model a box containing the text “GO” suddenly

appears in the periphery, its location will be available in WM shortly thereafter, but not its

46

text. An eye movement to that location can then be executed. Once the “GO” box appears

in the fovea, the text will also make its way into WM after a delay.

Setting these zones with fixed boundaries is clearly a simplification in the

architecture, but it is a profound architectural feature nonetheless. The feature allows the

availability of object properties to decrease gradually as the objects appear further from the

center of the gaze. This is a well-documented aspect of human performance that is not

present in other cognitive architectures such as ACT-R, ACT-R/PM, and Soar, but one that

needs to be incorporated into models of visual search because it will constrain the strategies

and ocular motor processing that can be used to explain and predict data. EPIC-Soar

(Chong, 1998a; Chong, 1998b) of course uses the same visual zones because EPIC-Soar

directly combines EPIC’s perceptual and motor processors with Soar’s cognitive

processor.

Location information can also be made available to the cognitive processor by

defining named locations for a particular task environment. Named locations represent

knowledge of fixed locations in visual space, task knowledge that has been gained with

task experience.

To act upon the environment, a production-rule strategy sends motor commands to

the various motor processors. These motor commands specify a movement in terms of its

style, as well as other characteristics such as direction and extent. Predefined manual

movement styles allow EPIC to point with a mouse (the POINT style), press a mouse

button (PRESS), point with a mouse while holding down the mouse button (POINT-

PRESSING), and release a mouse button (RELEASE).

There is an assumption in EPIC that with practice a person can combine two or

more consecutive motor movements into one compound movement, all the submovements

of which can be prepared in advance. Compound movement styles combine multiple

movements into a single command. For example, the PUNCH compound movement style

executes a PRESS and RELEASE with a single command. A PUNCH of a mouse button

47

is more commonly referred to as “clicking” the mouse button. It is called PUNCH,

however, because it is an EPIC movement style for interacting with any button.

A motor movement must be prepared and then executed. Movement preparation

time will be reduced if the previously executed movement had any identical features. A

POINT, for example, has four features: movement style, hand (left or right), direction, and

distance. The standard 200 msec to prepare a POINT will be reduced to zero if all four

features are identical to those of the previous manual motor command. Execution time

represents the time required for mechanical muscular movements in the physical world, and

is thus determined in part by features such as the distance that an effector must travel.

Motor movement styles and their associated timing functions and parameters are based on

the human motor control literature (see Rosenbaum, 1991). Execution time for a mouse

point, for example, is determined by the Welford version of Fitts’ law (Card et al., 1983),

with a minimum execution time of 100 msec enforced:

T Distance
Width

= K · log2 + 0.5max 100 , msec

For a POINT movement, the coefficient K is set to 100, as given in Card et al. (1983). For

a POINT-PRESSING movement, the coefficient K is set to 140; this value is derived from

data reported by Walker, Meyer & Smelcer (1993). These two values allow EPIC to

account for the button-depression effect discussed by Nilsen (1991).

In short, EPIC is applied to a task as follows: The production-rule strategy directs

the eyes to objects in the environment. The eyes have a resolving power which determines

the processing time required for different object features, such as location and text. When

information needed to determine the next motor movement arrives in WM, the strategy

instructs the ocular motor and manual motor processors to move the eyes and hands.

This provides a cursory overview of the EPIC cognitive architecture. A more

thorough description of EPIC is presented by Kieras and Meyer (1997) and Meyer and

Kieras (1997a; 1997b; 1999)

48

All of the models for this dissertation were built using the EPIC cognitive

architecture. There are many reasons for building models using an existing architecture

such as EPIC, including (a) the models contribute to the validation and thus evolution of a

unified theory of cognition (Newell, 1990), (b) the architecture represents a theory, so the

models build on existing theory, and other researchers can more readily understand and

evaluate basic assumptions of the models, and (c) the model builder can get something

interesting up and running much more quickly.

3.2 The Modeled Task

The menu selection task modeled in this dissertation was designed by Nilsen, who

presented the task to human participants in an experiment (Experiment 2 in Nilsen, 1991).

This study is in some ways typical of the menu studies discussed in Chapter 2, but it also

has some unique features that make the experiment and its data particularly useful for

studying the perceptual, cognitive, and motor processes of visual search and response

selection. First, this experiment isolates a subset of the processes required in a “real

world” menu task. The task is not confounded with more complex processes of reading,

comprehension, judgment, decision making, and problem solving. Second, Nilsen varied

menu length and reported selection time as a function of the Serial Position of the target

menu item. Few researchers have reported such data but, as will be seen in Chapter 4, this

combination was critical for revealing search strategy.

A description of the experimental procedure and observed data follows.

3 .2 .1 Procedure

In his experiment, Nilsen presented participants with pull-down menus of three,

six, and nine menu items. Menu items were the numerical digits from 1 to n, where n was

the length of the menu. Menu items were either randomly re-ordered for each trial or

presented in numerical order. Trials were blocked by menu length and ordering. Menus

49

always appeared at the exact same location on a computer screen. The distance between

menu items was roughly 0.2 inches. The distance from eye to screen was neither

controlled nor measured, but was probably between fifteen and thirty inches for each

participant.

As shown in Figure 3.3, each trial consisted of the following steps: Using a

mouse, the participant moved the cursor to the GO box, which caused the precue of the

target item to appear above the GO box. The participant clicked the mouse button. The GO

box and precue disappeared, the menu appeared, the cursor was automatically positioned

one pixel above the first menu item, and the clock started. The participant used the mouse

to move the cursor to the target item in the menu. The participant clicked the mouse button.

The clock stopped.

4

GOGO

4

1

2

4

3

5

6

Figure 3.3. Nilsen’s menu selection task with a
randomly ordered menu and six items in the menu.

Two different menu styles were used: walking and click-open. With walking

menus, participants moved the cursor to the GO box, pressed and held down the mouse

button, moved the cursor to the target while keeping the mouse button depressed, and then

released the mouse button. With click-open menus, participants moved the cursor to the

50

GO box, clicked the mouse button, moved the cursor to the target, and then clicked the

mouse button. Within a block, all menus were of the same style.

Eight experienced mouse users participated in the experiment, and were financially

motivated to perform each trial as quickly as possible. Nilsen presented each participant

with eighteen trials for every possible combination of target position, menu length, menu

ordering, and menu style (walking versus click-open). The final fifteen asymptotic trials

are reported in the data.

3 .2 .2 Results

Figure 3.4 shows Nilsen’s observed data for randomly and numerically ordered

menus, averaged across participants, blocks, and menu style (walking versus click-open),

as well as the time required to move the mouse to each position as predicted by the Welford

form of Fitts’ law (see Card et al., 1983, Ch. 2) with a coefficient of 120. Figure 3.5

shows the same data, but collapsed by menu length and expanded by menu style (walking

versus click-open).

The important features in the randomly ordered menu data include:

• Menu length effect. When the target item is in the same Serial Position
across menus of different lengths, shorter menus are faster.

• Serial Position effect. Selection time increases with a fairly linear slope
of about 100 msec per item. As can be seen in the graph, the mouse
movement time predicted by Fitts’ law cannot entirely account for this
slope either in shape or magnitude.

• Position 1 effect. The selection time for Serial Position 1 is a little
higher than the selection time for Serial Position 2.

The important features in the numerically ordered menu data include:

• Faster than random. Participants select an item from a numerically
ordered menu substantially faster than from a randomly ordered menu.
The same model will probably not be able to account for both random
and numerically ordered menu data. Evidently, less extensive visual
search is needed for the numerically ordered menus.

• Very fast. Participants select the target item from numerically ordered
menus very quickly, requiring only 350 to 950 msec to click on the GO

51

box, move the cursor to the target, and click on the target.

• No menu length effect. In the numerically ordered menu data, every
Serial Position takes the same amount of time regardless of the menu
length.

• Diminishing Serial Position effect. There is a negatively accelerated
increase in the numerically ordered menu data; the increase is greater than
that of the Fitts’ law prediction also shown on the graph.

The important feature for both randomly and numerically ordered menus that is

illustrated in Figure 3.5 is the button depression effect: People move the mouse more

slowly when the mouse button is depressed, as is the case with walking menus.

The above features in the data will help to guide the construction of cognitive

models in Chapter 4. All of the proposed models will be evaluated in terms of how well

the models’ predictions match Nilsen’s observed data.

52

0

200

400

600

800

1000

1200

1400

1600

1800

S
el

ec
ti

o
n

 T
im

e
(m

se
c)

0 1 2 3 4 5 6 7 8 9
Serial Position

Randomly
ordered
menus

Numerically
ordered menus

Fitts’ law
prediction

Figure 3.4. Nilsen’s observed data for randomly and numerically
ordered menus. Mean selection times as a function of Serial Position
of target item, for menus with three (), six (), or nine () items.
Also: Time required to move the mouse to each Serial Position as
predicted by Fitts’ law with a coefficient of 120. (From Experiment
2 in Nilsen, 1991.)

0

200

400

600

800

1000

1200

1400

1600

1800

S
el

ec
ti

o
n

 T
im

e
(m

se
c)

0 1 2 3 4 5 6 7 8 9
Serial Position

Randomly
ordered
menus

Numerically
ordered menus

Fitts’ law prediction

Figure 3.5. The same data as in Figure 3.4, but collapsed by menu
length and expanded by menu style (walking versus click-open).

53

3.3 Inputs to the Architecture

 All of the components that were required for the models to run using EPIC are

discussed in this chapter. These components include (a) the simulation of the task

environment, (b) the perceptual encodings, (c) minor enhancements to the architecture, (d)

named locations, and (e) task strategies.

3 .3 .1 The Task Environment

Though ultimately it is the perceptual, cognitive, and motor processing that is of

interest in a cognitive model, there is a tight coupling between the perceptual-motor systems

and the task environment in a visual search task. Hence, Nilsen’s task environment must

be simulated precisely to provide EPIC an accurate “physical” world with which to interact.

The task environment is basically responsible for two things—displaying stimuli

and responding to actions. The stimuli that must be displayed in Nilsen’s experiment

include: (a) the cursor, (b) the GO box, (c) the precue, and (d) each of the individual menu

items. The responses to actions include:

1. When the mouse is moved, move the cursor.

2. When the cursor is moved into the “GO” box, display the precue.

3. When the mouse clicks inside the “GO” box, remove the “GO” box,
remove the precue, start the clock, and display the menu.

4. When the target item is clicked, stop the clock, record the time, remove
the menu, and display the “GO” box.

The task environment was programmed in LISP to replicate Nilsen’s experiment. It

displays all of the appropriate stimuli at the correct time and location, and responds to

EPIC’s motor activities in the same manner as the experimental software would have

responded to the participants’ mouse points and clicks.

A visual depiction of the physical environment of an executing model appears in

EPIC’s Visual Space window (see Figure 3.6). This view is helpful for verifying correct

interaction between EPIC and the task environment.

54

Figure 3.6. EPIC’s Visual Space window shows the objects in the task
environment and where EPIC is looking during model execution. Shown here is
the task environment for the Nilsen menu selection experiment with an eye-to-
screen distance of 24 inches. The mouse cursor, represented by the crosshairs, is
sitting where it clicked on the “GO” box. The gray circle is EPIC’s fovea,
indicating that EPIC’s gaze is currently on the bottom menu item. The borders
of the parafovea can be seen in the top left and right corners.

The task environment simulates the creation of physical objects in the physical

visual space. A separate physical object is defined for the cursor, the GO box, the precue,

and each of the individual menu items. Each object is given a unique name, such as

physobj29. The task environment assigns properties to each physical object. Each

property is assigned a value. The object-property pairs used in the Nilsen models will now

be enumerated.

Every physical object is assigned a location, which is a Cartesian (x, y) coordinate

that corresponds to that object’s location on an imaginary stationary grid in physical space.

Every physical object is also assigned a zone property with a value that identifies the

55

physical location of the object’s image on the retina; the value can change when the eye or

the object moves.

The cursor object also has a shape property that identifies it as the cursor. It also

has a points-to property with a value that is the name of the physical object currently under

the cursor, or nil if the cursor points at nothing; this represents the physical relationship

between the cursor and the object under the cursor.

The remaining objects are all text items, and are assigned a text property, set to

“GO” for the GO box, and set to a numerical digit for the precue and menu items. Text

objects are also assigned an in-menu property, set to yes for items in the menu, and no for

all other items; this represents physical clues would distinguish the “GO” box and precue

from items in the actual menu.

Every menu item object also has additional properties that represent its physical

position in the menu in relationship to the other menu items. The is-above property names

the menu item that is below the object, and is-below property names the menu item that is

above the object. The is-below of the top item and the is-above of the bottom item has a

value of nothing.

All objects that will be selected with the mouse also have a size property that is

used to predict the time required for a mouse movement to the object.

After being deposited into visual physical space, physical objects and properties

are perceived by EPIC’s perceptual processors and transformed into psychological objects.

The exact perceptual encodings of physical object properties are defined by the visual

encoding function in the visual perceptual processor. The exact parameters used in the

visual encoding function for the Nilsen models will be discussed next.

3 .3 .2 The Perceptual Encodings

For every physical object that enters EPIC’s simulated eyeball, a corresponding

psychological object is created. First, a psychological sensory property is created for

56

every physical property as a function of the availability of that property for the zone in

which the object appears. The availabilities and delays used in the models are listed in

Table 3.1. These parameters were established and validated in other EPIC models that

involved reading text from computer screens (Kieras & Meyer, 1997; Kieras, Wood &

Meyer, 1997).

After each psychological sensory property is created, it is then recoded into a

psychological perceptual property as a function of the recoding defined in the visual

recoding function. The visual recoding function gets called every time an object appears,

disappears, or moves from one retinal zone to another. It gets called once for every

sensory property of that object, and receives as input (a) the time tag (after the zone

property delay), (b) the psychological object name, (c) the sensory property name, and (d)

the property value. The visual recoding function uses these inputs to create perceptual

properties that are then deposited into visual WM.

In the visual recoding function for the Nilsen models, most of the sensory

properties are passed through and encoded into perceptual properties “as is”, with no

additional delay. This is the case for shape, in-menu, is-above, and is-below. Other

Object Property Availability of property when object is...
In bouquet In fovea In parafovea In periphery Not in view

Used by all items
LOCATION 50 50 50 50 —
ZONE 50 50 50 50 50

Used by cursor only
SHAPE 100 100 — — —
POINTS-TO 50 50 50 — —

Used by all text items
TEXT 100 100 — — —

Used by menu items only
IN-MENU 50 50 50 50 —
IS-ABOVE 51 51 51 51 —
IS-BELOW 51 51 51 51 —

Table 3.1. The availability of physical object properties in the menu models as a
function of the retinal zone in which the object appears. A number indicates the delay
(in msec) imposed by retinal filtering. A dash indicates the property is not available
in that zone.

57

sensory properties, however, trigger more elaborate recodings.

The sensory property text is recoded into the perceptual property label, with an

additional text-recoding-time delay of 100 msec; the renaming of the property and the

delay represent the mental effort required to transform each physical piece of text into

something meaningful to the cognitive processor.

The sensory property points-to, used only for the mouse cursor, enters the visual

recoding function with a value that is either nil or the physical object currently pointed to by

the cursor. A value of nil gets passed through directly, but a physical object is recoded as

the corresponding psychological object.

When the recoding function is called with the sensory property zone, the perceptual

property-value pair fovea yes or fovea no is created for the object. This represents a

theoretical assertion that, when visually searching, a person can distinguish whether or not

each object is in the fovea. This property is used by some strategies to saccade to items

outside of the fovea, and represents a perceptual feature that contributes to direct moment-

to-moment control (Prinz et al., 1992), a saccade programming scheme in which perceptual

features gathered during one fixation are used to program the features of the very next

saccade.

The sensory properties zone and location are also used to encode a global

perceptual property named next-sweep-item. A global perceptual property resides in

visual WM but is not attached to a specific psychological object. The next-sweep-item

property is assigned the name of the next psychological object that must be fixated in a

maximally efficient foveal sweep of the menu. This recoding represents a theoretical

assertion that people have the ability to move their gaze down the menu and foveate all

menu items with as few saccades as possible, and that the sweep is carried out by selecting

the next appropriate menu item as quickly as possible after the previous saccade, another

example of direct moment-to-moment control. Figure 3.7 depicts such a sweep.

58

9

2

4

7

5

6

8

3

1Hypothesized
foveal coverage
of successive
fixations.

Figure 3.7. A maximally efficient foveal sweep. The models make the
theoretical assertion that a person can make a chain of eye movements that
will sweep a column of visual objects with as few fixations as possible, and
yet insure that every object will be captured by the fovea during a fixation.

A maximally efficient foveal sweep requires a specific interaction between

perceptual availabilities and search strategy. As soon as a saccade is completed, the visual

recoding function must compute a new next-sweep-item, a computation that is assumed to

require 100 msec. As soon as the new location is available, the strategy must command an

eye movement to the new location. The processing results in an intersaccade latency of 200

msec, which fits well with what is typically observed for a rapid succession of saccades

(Russo, 1978).

3 .3 .3 Enhancements to the Architecture

Two small enhancements are made the EPIC architecture to model the Nilsen data.

They are visual recoding after saccade and a click-and-point compound movement. The

first is introduced to model Nilsen’s randomly ordered menu data, and the second to model

Nilsen’s numerically ordered menu data.

59

The first enhancement, visual recoding after saccade, is required to implement

direct moment-to-moment control, in which the direction and extent of the next saccade are

programmed using information gathered after the completion of the previous saccade.

Such control is required for the maximally efficient foveal sweep described above. To

facilitate the sweep, a new value for the global property next-sweep-item is computed

after every saccade. To trigger this computation, the visual perceptual processor must be

notified whenever a saccade has occurred. Though research has demonstrated that the

human visual system is notified when an eye movement occurs (Rosenbaum, 1991), this

notification had not yet been incorporated into the EPIC architecture.

EPIC was thus modified to call the new visual recoding after saccade function

following the execution of every ocular-motor move command. For these models, the

function then triggers the computation of a new next-sweep-item, which allows the

models to make a maximally efficient foveal sweep.

The second enhancement to the EPIC architecture is a click-and-point compound

movement. As discussed in Chapter 3, there is an assumption in EPIC that with practice a

person can combine two or more consecutive motor movements into one compound

movement, all the submovements of which can be prepared in advance. Several compound

movements are already defined in the architecture. The new click-and-point compound

movement allows the preparation for a point to be combined with that of an immediately

preceding click. Such overlapped preparation would be possible when a person decides to

click and point, and knows the destination of the point before clicking.

The specific modifications to the architecture to implement the click-and-point

compound movement are as follows: (a) The existing point movement style is modified to

allow a point to begin during the release of a mouse button rather than waiting for its

completion. (b) The existing point and point-pressing movement styles are modified to

require only 150 msec of preparation rather than the usual 200 msec if the movement was

preceded by a press or punch.

60

The click-and-point modifications are exploratory; a more complete representation

would be to introduce a completely separate movement style to the EPIC motor processor.

These modifications will only be used in the final models for the numerically ordered

menus.

3 .3 .4 Named Locations

EPIC uses named locations to represent the notion that people can learn a location

and initiate a movement to that location even if no physical object is currently visible at that

location. The Nilsen models employ three named locations: first-fixation-location,

target-location-correct, and target-location-with-error.

First-fixation-location is used to program the initial eye movement in the visual

search of the randomly ordered menus. It is assigned one of three locations: the position of

the first or second menu item, or the position of a randomly-chosen menu item.

Two named locations are used by the numerically ordered menu models. They

represent the notion that, when the exact same menu items appear in the exact same

locations trial after trial, people can learn the location of every item, and they can thus

anticipate the target location before the menu actually appears.

The first of these, target-location-correct, is used to explore the possibility that

people can exactly predict where the target will appear. At the beginning of every ordered

menu trial, this named location is set to the exact location where the target will appear.

The second, target-location-with-error, is used to explore the possibility that

people can approximately predict where the target will appear, that they sometimes get it

wrong, and that the error will be greater for items lower in the menu. To introduce this

variable error, the vertical coordinate of target-location-with-error is perturbed at the

beginning of every trial. The perturbations are normally distributed with a mean that is the

correct vertical position, and with a standard deviation

σ = e · d

61

where e is a constant error coefficient, and d is the distance from the GO box to the target.

Thus, the lower the target on the menu, the greater the error in target-location-with-error.

Abrams, Meyer, and Kornblum (1989) observed just such a linear relationship

between target distance and the standard deviation of endpoints in initial eye movements

directed at a single target that is peripherally visible before the start of the trial. A value of e

= 0.04 provides a very good fit with the data presented in Abrams et al. (1989). Though

Abrams et al. were explaining error in eye movements to visible targets and not error in

predicted locations, a similar relationship is used here.

3.4 Conclusion

This chapter introduced the basic components of the menu models, including an

overview of the EPIC cognitive architecture, Nilsen’s menu experiment, and the parameters

in the models. The next chapter presents the strategies that were developed to explain

Nilsen’s data using EPIC.

CHAPTER 4

MODELING RESULTS

This chapter completes the presentation of the menu selection models introduced in

the previous chapter. Specifically, this chapter narrates the development of cognitive

strategies in an effort to explain Nilsen’s menu selection data. Each strategy, and thus

model, will be evaluated with respect to how well it accounts for Nilsen’s data. Models of

Nilsen’s randomly ordered menu data will be presented first, and then models of Nilsen’s

numerically ordered menu data .

4.1 Randomly Ordered Menu Models

As discussed in the previous chapter, the important features in Nilsen’s randomly

ordered menu data include:

• Menu length effect. When the target item is in the same Serial Position
across menus of different lengths, shorter menus are faster.

• Serial Position effect. Selection time increases with a fairly linear slope
of about 100 msec per item. As can be seen in Figure 3.5, the mouse
movement time predicted by Fitts’ law cannot entirely account for this
slope either in shape or magnitude.

• Position 1 effect. The selection time for Serial Position 1 is a little
higher than the selection time for Serial Position 2.

Six randomly ordered menu models will be presented. The six models result from varying

two strategic dimensions and one parameter in the task environment. The strategic

dimensions are (a) serial versus parallel processing of menu items, and (b) random versus

systematic search. The parameter in the task environment is eye-to-screen distance, which

is set (to either 8 or 20 inches) to result in one or three items being visible in the fovea at the

same time.

62

63

The discussion of each model includes a flowchart that summarizes the production

rules written in EPIC to represent that model. Production rules were written to maximize

performance within the constraints imposed by EPIC, and to be as simple as possible.

4 .1 .1 Serial Processing Models

The serial processing models represent a belief that people process one menu item at

a time—that people move their gaze to an item, visually process it, decide if it is the target,

click on the item if it is, or go on to the next item if it is not. As discussed in Chapter 2,

many researchers have proposed such a process. The proposed model does not specify the

search strategy used to find the next item and, as discussed in Chapter 2, researchers have

proposed two major opposing ideas: random versus systematic. So two separate sets of

production rules were built in EPIC to represent two possible serial processing models: one

with random search and the other with systematic top-to-bottom search. These sets of rules

are listed in Appendices A and B.

Both serial processing models were only run with an eye-to-screen distance of 8

inches so that only one item would fit into the fovea at a time, insuring a serial encoding

process. At greater distances, more than one item would fit into the fovea simultaneously,

and parallel encoding would ensue.

Serial Processing Random Search Model

The results from running the Serial Processing Random Search model are shown in

Figure 4.1. Each predicted selection time is averaged from 300 trials run for that menu

length and Serial Position combination.

The results in Figure 4.1 suggest that the Serial Processing Random Search model

is wrong. The only feature in the observed data that this model accounts for is that shorter

menus are faster than longer menus. Otherwise, the model does not fit the observed data.

Selection times are much too high overall. Slopes are very small because every item takes

64

0

500

1000

1500

2000

2500

3000

3500

4000

4500

S
el

ec
ti

o
n

 T
im

e
(m

se
c)

0 1 2 3 4 5 6 7 8 9
Serial Position

1.2.2-G1-300T

Figure 4.1. Selection times observed (solid lines) and predicted
(dashed lines) by the Serial Processing Random Search model run with
one item fitting into the fovea.

on average the same amount of time to find and select; any slope that appears is due to the

mouse movement. A higher selection time for Serial Position 1 is not predicted. This

model does not account for the observed data.

Serial Processing Systematic Search Model

The results from running the Serial Processing Systematic Search model, shown in

Figure 4.2, suggest that this model is also wrong. The only feature in the observed data

that this model accounts for is a positive slope greater than that of the predicted Fitts

movement time. The model accounts for no other features in the observed data. Shorter

menus are not faster. The slope of the predicted data is too steep. The selection time for

Serial Position 1 is not higher than for Serial Position 2. This model does not account for

the observed data.

The prediction has a slope resulting from more than just the mouse movement, but

the predicted slope is too steep, about 380 msec per item as opposed to about 100 msec per

item in the observed data. The discrepancy between the predicted and observed data results

from all of the processing that must take place before moving the gaze to the next menu

item. The slope of approximately 380 msec results because this is the time required for

65

0

500

1000

1500

2000

2500

3000

3500

4000

4500

S
el

ec
ti

o
n

 T
im

e
(m

se
c)

0 1 2 3 4 5 6 7 8 9
Serial Position

1.2.1-G1-1T

Figure 4.2. Selection times observed (solid lines) and predicted
(dashed lines) by the Serial Processing Systematic Search model run
with one item fitting into the fovea. The predicted times for the same
Serial Position in different menu lengths are the same and are thus
superimposed.

EPIC to move the eye, perceptually process a menu item, move the features to working

memory (WM), and decide on an item. Serially processing each item cannot produce a

slope of 100 msec per item unless the architecture is radically altered by setting the

processing times for each of these components to be implausibly fast. Only by processing

multiple items at once can a model produce such a small slope.

The results provided by the serial processing models provide strong evidence that,

when scanning a menu, people process more than one menu item at a time. The serial

processing models proposed by Norman (1991) and Vandierendonck et al. (1988) are

highly implausible given the constraints set by the architecture. Menu selection models

should incorporate the assumption that people process more than one menu item at a time.

The remaining models presented in this paper utilize parallel processing of menu items.

4 .1 .2 Parallel Processing Models

The parallel processing models represent a belief that people move their gaze across

the menu as quickly as their perceptual-cognitive-motor processes allow, process the

features of all objects that appear in the fovea in parallel using a “pipeline” facility to

66

continue recognition even after the gaze has shifted away, and at the same time continually

check WM to see if the target item has been seen. As soon as the target item has been

located, the person moves his or her gaze to it and clicks on it. In one of the parallel

processing models, people search randomly for the target; in the other, they start at the top

and scan down the menu.

Both parallel processing models were run with different eye-to-screen distances that

resulted in one and three items fitting into the fovea simultaneously. When more than one

item is visible in the fovea, all of those objects’ properties are sent to WM in parallel and,

when searching, the next eye movement will always be to an item not currently in the

fovea.

Parallel Processing Random Search Model

The Parallel Processing Random Search model was inspired by Card (1983,

reviewed above in Chapter 2), who proposed that people search randomly. The production

rules for the Parallel Processing Random Search strategy are listed in Appendix C. Figure

4.3 shows a flowchart summarizing the rules. For the sake of brevity, the flowchart

summarizes the two different sets of motor movements required for the two different menu

styles (walking versus click-open) as just click, move, and click. To prevent a random eye

“movement” to essentially the same location, the model chooses the next item to look at

from the items currently outside the fovea.

Click the mouse on GO box to show menu and
move eyes to a random location on menu.

As soon as it is determined which items are not in the fovea,
randomly choose one of the items and move eyes to it.

Quit searching when target item appears in working memory.

Move cursor and eyes to item.

Click mouse.

These
steps take

place in
parallel

Look at the precue.

Figure 4.3. Parallel Processing Random Search model.

67

The results from running the Parallel Processing Random Search model are shown

in Figure 4.4. Each predicted selection time is averaged from 300 trials run for that menu

length and Serial Position combination.

The predictions from the Parallel Processing Random Search model have some

features that correspond to the observed data, but also have some problems.

As can be seen in Figure 4.4 (top graph), when one item at a time is visible in the

fovea, the model accounts for shorter menus being faster, but no other features of the

observed data. The overall predicted times are, however, significantly lower than in the

Serial Processing Random Search model discussed above.

0

500

1000

1500

2000

2500

3000

S
el

ec
ti

o
n

 T
im

e
(m

se
c)

0 1 2 3 4 5 6 7 8 9
Serial Position

1.2.6-G1-300T

0

500

1000

1500

S
el

ec
ti

o
n

 T
im

e
(m

se
c)

0 1 2 3 4 5 6 7 8 9
Serial Position

1.2.6-G3-300T

Figure 4.4. Selection times observed (solid lines) and predicted
(dashed lines) by the Parallel Processing Random Search model run
with one item (top graph) and three items (bottom graph) fitting into
the fovea.

68

As can be seen in Figure 4.4 (bottom graph), when three items are visible in the

fovea simultaneously, the model accounts for shorter menus being faster, and about the

right amount faster, as is shown by the distance between the predicted lines approximating

the distance between the observed lines. The predicted values fall entirely within the range

of the observed values. Most importantly, this model accounts for Serial Position 1 being

higher than Serial Position 2. However, the overall slope is still too small.

In Figure 4.4 (bottom graph), both the first and last Serial Positions are higher

because the model combines random search with three menu items fitting into the fovea.

Items at both ends of the menu have a lower probability of being in the fovea after any

random fixation. Any of the middle menu items can be foveated by moving the eye to that

item, or to either of the two adjacent items. But the first and last items only have one

adjacent item. This might explain Serial Position 1 being higher than Serial Position 2 in

the observed data.

The predictions from the Parallel Processing Random Search model suggest that the

model is partly correct, and partly incorrect.

Parallel Processing Systematic Search Model

Figure 4.5 is a flowchart that represents the production rules built in EPIC to

investigate the possibility that participants used a Parallel Processing Systematic Search

strategy. Though other systematic searches are possible, top-to-bottom is the most obvious

one to explore. The production rules are also listed in Appendix D.

In this model, the first eye movement is made to any of the items that are within one

foveal radius from the topmost item (to insure the first gaze captures the topmost item).

Each subsequent movement is made to an item one foveal diameter below the center of the

current fixation. These details represent the belief that, when using a systematic search

strategy, people attempt to maximize the foveal coverage with a minimum number of eye

movements.

69

Click the mouse on the GO box to show the menu and
move eyes to where one of the top items will appear.

Determine the item one foveal diameter below gaze.

Quit searching when target item appears in working memory.

Move mouse and gaze to item.

Click mouse.

These
steps take

place in
parallel.

Look at the precue.

Move eyes to that item.

Figure 4.5. Parallel Processing Systematic Search model.

The results from running the Parallel Processing Systematic Search model are

shown in Figure 4.6. Each predicted selection time is averaged from one trial run for each

possible combination of menu length, Serial Position, and first eye movement.

The predictions from the Parallel Processing Systematic Search model have some

features that correspond to the observed, but also have some problems.

As can be seen in Figure 4.6 (top graph), when one item at a time is visible in the

fovea, the model only accounts for a positive slope. The model does not predict that

shorter menus will be faster, the slope is too steep, and Serial Position 1 is not higher.

As can be seen in Figure 4.6 (bottom graph), when three items are visible in the

fovea simultaneously, the model can account for important features of the data. The slope

is correct and the predicted values fall entirely within the range of the observed values. But

again, the model does not account for shorter menus being faster, and Serial Position 1 is

not higher.

These results show that the Parallel Processing Systematic Search model can

partially explain how the participants accomplished the task, but not account for all aspects

of the observed data.

70

0

500

1000

1500

2000

2500

3000

S
el

ec
ti

o
n

 T
im

e
(m

se
c)

0 1 2 3 4 5 6 7 8 9
Serial Position

1.2.7-G1-1T

0

500

1000

1500

S
el

ec
ti

o
n

 T
im

e
(m

se
c)

0 1 2 3 4 5 6 7 8 9
Serial Position

1.2.7-G3-1T-S1/2

Figure 4.6. Selection times observed (solid lines) and predicted
(dashed lines) by the Parallel Processing Systematic Search model run
with one item (top graph) and three items (bottom graph) fitting into
the fovea. In each graph, the predicted times for the same Serial
Position in different length menus are the same and are thus
superimposed.

Hybrid Models

None of the models presented thus far can account for all of the features in the

observed data. The serial processing models account for essentially none of the features of

the observed data. But all features of the observed data are accounted for by at least one of

the various parallel processing models. The hybrid models represent a belief that, when

Nilsen ran his experiment, (a) participants used both random and systematic search, and

(b) screen-to-eye distance varied across trials.

71

The hybrid models were motivated by observing that all of the features in the

observed data are accounted for by at least one of the parallel processing models with one

or three items fitting into the fovea. The random search model accounts for faster selection

times in shorter menus. When three items fit into the fovea, the random search model also

accounts for Serial Position 1 being higher. The systematic search model accounts for the

correct slope when three items fit into the fovea.

Dual Strategy Hybrid Model

The Dual Strategy Hybrid model represents the hypothesis that participants

processed menu items in parallel in all of the observed trials, but that participants searched

randomly in some of the trials and systematically in the remainder of the trials. Such a

model could accurately account for the observed data if (a) some participants searched

randomly and others systematically, or (b) participants varied their search strategy from

trial to trial. Since the observed data were averaged across participants and blocks, either

scenario would produce the same results.

Predictions from this hybrid model can be obtained in two ways. The first is to

build a set of EPIC production rules that contain the rules from both the Parallel Processing

Random Search strategy and the Parallel Processing Systematic Search strategy; the

strategy would randomly choose which search strategy to use at the start of each trial. The

second is to compute the weighted average of the predicted values produced by running the

two models independently. Since both approaches would produce the same predictions,

the second approach was chosen for expedience. Figure 4.7 shows the results of this

model, as determined by averaging the results shown in Figure 4.4 and Figure 4.6. An

initial weighting of 50% for each strategy was chosen to explore the predictive potential of

the model.

The predictions from the Dual Strategy Hybrid model can account for most of the

features in the observed data, but do not fit the observed values perfectly.

72

0

500

1000

1500

2000

2500

3000

S
el

ec
ti

o
n

 T
im

e
(m

se
c)

0 1 2 3 4 5 6 7 8 9
Serial Position

1.2.6-1.2.7-G1

0

500

1000

1500

S
el

ec
ti

o
n

 T
im

e
(m

se
c)

0 1 2 3 4 5 6 7 8 9
Serial Position

1.2.6-1.2.7-G3

Figure 4.7. Selection times observed (solid lines) and predicted
(dashed lines) by the Dual Strategy Hybrid model, with one item (top
graph) and three items (bottom graph) fitting into the fovea.

As can be seen in Figure 4.7 (top graph), when one item fits into the fovea, the

model accounts for faster selection times in shorter menus and produces a near-perfect

slope. But the model does not account for the higher selection time in Serial Position 1,

and overall the predicted values are higher than the observed values.

As can be seen in Figure 4.7 (bottom graph), when three items fit into the fovea,

the model accounts for faster selection times in shorter menus, produces a comparable

slope, accounts for the higher selection time in Serial Position 1, and predicts values that

are in range of the observed data. The only shortcoming of this model is that the predicted

values do not exactly match the observed values.

73

Dual Strategy Varying Distance Hybrid Model

The Dual Strategy Varying Distance Hybrid model represents a hypothesis that (a)

participants searched randomly in some of the trials and systematically in the remainder of

the trials and (b) the eye-to-screen distance varied across trials. Since this distance was not

controlled or measured during the experiment, it is very likely that some participants sat

closer to the computer screen than others, and that participants moved nearer to and further

from the screen during the course of the experiment.

Predictions from this hybrid model can be obtained in two ways. The first is to

build a task environment that varies the screen distance from trial to trial, and to randomly

choose the search strategy at the start of each trial. The second is to compute the weighted

average of the predicted values produced by each of the following four models:

1. Random search, one item in the fovea (Figure 4.4, top).

2. Random search, three items in the fovea (Figure 4.4, bottom).

3. Systematic search, one item in the fovea (Figure 4.6, top).

4. Systematic search, three items in the fovea (Figure 4.6, bottom).

Since both approaches would produce the same predictions, the second approach was

chosen for expedience.

The procedure for obtaining the best-fitting weighted average of the four models

will now be described. The four models result from varying two factors: (a) strategy and

(b) eye-to-screen distance (which determines the number of items in the fovea). Each of

the two factors was varied independently. A computer program stepped through all

possible contributions of each of the two factors, that is, wr% random and (100-wr)%

systematic, and w1 one-item-in-the-fovea and (100-w1)% three-items-in-the-fovea, where

wr and w1 were both integers from 0 to 100. The contribution of each of the four models

was determined by multiplying the strategy weight by the items-in-the-fovea weight, such

as wr × w1 to determine the contribution of random search with one item in the fovea.

The weights that produced the lowest average absolute error across all of the data

74

points were 43% random (and 57% systematic) and 18% one item in the fovea (and 82%

three items in the fovea). Multiplying these strategy weights and items-in-the-fovea

weights resulted in the following contribution for each model:

7.7% Random search, one item in the fovea (Figure 4.4, top).

35.3% Random search, three items in the fovea (Figure 4.4, bottom).

10.3% Systematic search, one item in the fovea (Figure 4.6, top).

46.7% Systematic search, three items in the fovea (Figure 4.6, bottom).

Summing these contributions for each data point individually results in the Dual Strategy

Varying Distance Hybrid model shown in Figures 4.8 and 4.9.

The Dual Strategy Varying Distance Hybrid model accounts for all of the features in

the observed data. As can be seen in Figure 4.8, the model predicts the observed values

very well, with an average absolute error of 2.8%. As can be seen in Figure 4.9, the

model also accounts for the data when the data and the predictions are collapsed by menu

length and expanded by menu style (walking versus click-open), with an average absolute

error of 2.2%. Matching the observed values, the Dual Strategy Varying Distance Hybrid

model offers a highly plausible explanation of the task environment and strategies used by

participants in Nilsen’s experiment.

The empirical data that is available aggregates the performance for all participants,

and thus the models do the same. If individual participant data were available, they could

be used to determine if some participants tended toward random search and others towards

systematic search. This could be done by determining, for each participant, whether his or

her data were better explained by the Parallel Processing Random Search Model or by the

Parallel Processing Systematic Search.

75

0

500

1000

1500

S
el

ec
ti

o
n

 T
im

e
(m

se
c)

0 1 2 3 4 5 6 7 8 9
Serial Position

Lowest AAE

Figure 4.8. Selection times observed (solid lines) and predicted
(dashed lines) with by the Dual Strategy Varying Distance Hybrid
model, with 43% of the trials using random search and 57% of the
trials using systematic search, and with one item fitting into the fovea
on 18% of the trials and three items fitting into the fovea on 82% of
the trials.

0

500

1000

1500

S
el

ec
ti

o
n

 T
im

e
(m

se
c)

0 1 2 3 4 5 6 7 8 9
Serial Position

Lowest AAE

Click-Open, Predicted

Walking, Predicted

Click-Open, Observed

Walking, Observed

Figure 4.9. The same data and predictions as shown in Figure 4.8, but
collapsed by menu length and expanded by menu style (walking versus
click-open).

76

4.2 Numerically Ordered Menu Models

Models of Nilsen’s numerically ordered menu data will now be presented. As

discussed in Chapter 3, the important features in the numerically ordered menu data

include:

• Faster than random. Participants select an item from a numerically
ordered menu substantially faster than from a randomly ordered menu.
The same model will probably not be able to account for both random
and numerically ordered menu data.

• Very fast. Participants select the target item from numerically ordered
menus very quickly.

• No menu length effect. Every Serial Position takes the same amount of
time regardless of the menu length.

• Diminishing Serial Position effect. There is a negatively accelerated
increase in the numerically ordered menu data; the increase is greater than
that of the Fitts’ law prediction also shown on the graph.

Two classes of models will be presented to explain the data—the Immediate Look,

Point, and Click models and the Immediate Look, Point, Check and Correct models. All of

the models assume that people will use anticipated location knowledge to prepare and

execute eye and hand movements to the target without waiting for the menu to actually

appear in WM. The anticipated location knowledge is made available by means of the

named locations discussed in Chapter 3.

4 .2 .1 Immediate Look, Point, and Click Models

The Immediate Look, Point, and Click models represent a hypothesis that people

anticipate a target location before opening a menu, execute an eye movement and a mouse

movement to that location immediately upon opening the menu, and then click on that

location without confirming that the cursor is actually on the target. This strategy assumes

that anticipated target locations are correct, and thus takes maximum advantage of the

anticipated locations to complete the selection as efficiently as possible. The EPIC

77

Eyes and cursor are on GO
box. Target text is in WM.

Click on GO box.

Move eyes and cursor to
anticipated target location.

Click on the anticipated
target location.

Figure 4.10. The Immediate Look, Point,
and Click strategy.

production rules to represent this strategy are summarized in Figure 4.10, and are listed in

Appendix E.

Standard Fitts’ Law Coefficients Model

The results from running the Immediate Look, Point, and Click strategy are shown

in Figure 4.11. Each predicted selection time is averaged from one trial run for every menu

length and Serial Position combination. For these trials, the Fitts’ law coefficients in EPIC

were set to the standard 100 for a POINT and 140 for a POINT-PRESSING.

The predictions of this model are shown in Figure 4.11. Since there is no menu

0

200

400

600

800

1000

S
el

ec
ti

o
n

 T
im

e
(m

se
c)

0 1 2 3 4 5 6 7 8 9
Serial Position

1.3.22-G3-1T

Predicted, click-open

Predicted, walking

Observed, click-open

Observed, walking

Figure 4.11. Selection times observed by Nilsen and predicted by
the Immediate Look, Point, and Click strategy run with standard
Fitts’ coefficients of 100 and 140.

78

length effect in the numerically ordered data, as shown earlier in Figure 3.4, Nilsen’s data

and the model’s predictions are shown collapsed by menu length, but expanded by menu

style (walking versus click-open). The predictions demonstrate that the model is incorrect.

The predicted values are negatively accelerated, as are the observed data, and the

difference between the two menu styles is predicted to be the same as the observed data.

But the predictions for most Serial Positions are much too fast, the trend in the predicted

values does not increase steeply enough, and the prediction for Serial Position 1 is much

too high.

For Serial Positions 2 through 9, the model could be underpredicting for a number

of reasons, including (a) participants could not anticipate the exact location of the target,

which would imply that (b) this is not the strategy participants really used, or (c)

participants took longer to point than is predicted by Fitts’ law with the standard

coefficients. The next model investigates the third of these possibilities.

Nonstandard Fitts’ Law Coefficients Model

The Immediate Look, Point, and Click strategy run with nonstandard Fitts’

coefficients represents the belief that participants could anticipate the exact location of a

target item before the menu appears and always execute a correct eye and hand movement

to the target, but that mouse points took longer than is predicted by standard Fitts’

coefficients. The results from running the Immediate Look, Point, and Click strategy with

exactly known location information and with nonstandard Fitts’ coefficients of 175 and 220

are shown in Figure 4.12. The values of 175 for POINT and 220 for POINT-PRESSING

were chosen iteratively to provide a good fit. The implications of these increased values are

discussed later.

With the increased Fitts’ coefficients, this model now does a very good job of

predicting selection times for Serial Positions 2 through 9. The difference between the

predicted and observed values for the two menu styles is the same, and both the predicted

79

0

200

400

600

800

1000

S
el

ec
ti

o
n

 T
im

e
(m

se
c)

0 1 2 3 4 5 6 7 8 9
Serial Position

1.3.22-G3-1T-175/220

Predicted, click-open

Predicted, walking

Observed, click-open

Observed, walking

Figure 4.12. Selection times observed by Nilsen and predicted by the
Immediate Look, Point, and Click strategy run with Fitts’ coefficients
increased to 175 and 220.

and the observed values follow the same negatively accelerated trend. The overall

plausibility of this model and the implications of the nonstandard Fitts’ coefficients will be

discussed after providing a plausible explanation for the high speed of Serial Position 1.

Special Case for Position 1 Model

An explanation for how participants selected targets in Serial Position 1 so quickly

requires a detailed analysis of the task. Recall that upon clicking on the GO box, the cursor

is automatically positioned exactly one pixel above the first menu item. When the

participant knows the target item will be in Serial Position 1, all that he or she must do is

click on the GO box, make a tiny downward movement with the mouse, confirm that the

target has actually appeared, and click again.

Additional production rules were added to the Immediate Look, Point, and Click

strategy to create a Special Case for Position 1 branch, rules that will only be executed if

the precue is a 1. A flowchart summarizing the production rules appears in Figure 4.13.

In the Special Case for Position 1 branch, there is no separate POINT movement. Rather,

to accommodate this aspect of the experimental procedure that only affects Serial Position

1, the click on the GO box is assumed to include a tiny downward twitch. The rules are

80

Eyes and cursor are on GO
box. Target text is in WM.

Click on GO box.

Move eyes and cursor to
anticipated target location.

Click on the anticipated
target location.

Click on GO box

Wait for label of
item 1 to appear.

Click again.

No YesTarget
is “1”?

Figure 4.13. The Immediate Look, Point, and Click
strategy with Special Case for Position 1 branch.

listed in Appendix F.

EPIC’s predictions when running the Immediate Look, Point, and Click strategy

with Special Case for Position 1 and nonstandard Fitts’ coefficients are shown in Figure

4.14. As can be seen, this model predicts the observed data very well, for an average

absolute error of 3.0%.

These nonstandard Fitts’ coefficients will only slightly decrease the good fit of the

Dual Strategy Varying Distance Hybrid model for randomly ordered menus presented in

Section 4.1.10 above. Repeating the procedure outlined in that section, but with these

nonstandard Fitts coefficients of 175 and 220, results in a Dual Strategy Varying Distance

Hybrid model with nonstandard Fitts’ coefficients prediction of 4.3% rather than 2.8%

when run with the standard Fitts’ coefficients.

Though this model explains the data well and offers a reasonable explanation for

how people accomplish the task, there are two aspects of this model that make it

questionable. First, it is hard to accept Fitts’ coefficients so much higher than the standard

values. Second, the model asserts people know exactly where to look and point before the

menu even appears.

The first problem, of the increased Fitts’ coefficients, actually points to a

81

0

200

400

600

800

1000

S
el

ec
ti

o
n

 T
im

e
(m

se
c)

0 1 2 3 4 5 6 7 8 9
Serial Position

1.3.24-G3-1T-175/220

Predicted, click-open

Predicted, walking

Observed, click-open

Observed, walking

Figure 4.14. Selection times observed by Nilsen and predicted by the
Immediate Look, Point, and Click strategy with Special Case for
Position 1 run with nonstandard Fitts’ coefficients of 175 and 220.

shortcoming in the HCI literature. Though Fitts’ law is often cited as a useful tool for

prediction and design in HCI (such as in Card et al., 1983; Han, Jorna, Miller & Tan,

1990; MacKenzie & Buxton, 1992), the exact form and coefficients of Fitts’ law are not

settled. Fitts’ equation appears in several forms (for example, compare Card et al., 1983;

Han et al., 1990; MacKenzie & Buxton, 1992), which makes some coefficients

incomparable. Some studies in fact provide evidence for a Welford form of Fitts’ law with

a coefficient of about 175 for a mouse point (Han et al., 1990; MacKenzie & Buxton,

1992). But it is not clear whether such large Fitts’ coefficients are reasonable. Much more

work needs to be done to determine the correct Fitts’ coefficients for various tasks,

pointing devices, and environments.

The second problem is that all of the Immediate Look, Point, and Click models

assume that a person has exact location knowledge for all menu items before the menu even

appears. This assertion seems to contradict Perlman’s (1984) and Somberg’s (1987)

findings that, even with numerically and alphabetically ordered menus and a constant time

to select an item once it is found, the top menu items can be selected faster than lower menu

items. Perlman’s and Somberg’s findings suggest that some items do take longer to locate

even in a known, ordered menu.

82

So, the Immediate Look, Point, and Click models provide a good fit and a

reasonable explanation for how people select an item from an ordered menu. But the

models discussed next provide an equally good fit and perhaps an even more plausible

explanation.

4 .2 .2 Immediate Look, Point, Check and Correct Models

The Immediate Look, Point, Check and Correct models represent a hypothesis that

people anticipate a target location before opening a menu, execute an eye movement and a

mouse movement to that location immediately upon opening a menu, check to see if the

cursor actually landed on the target, make a corrective eye movement and mouse movement

if necessary, and then click on the target. These models allow us to explore the possibility

that people cannot predict the exact location of the target before it appears, but only an

approximate location.

The flowchart in Figure 4.15 summarizes the production rules written in EPIC to

explore the plausibility of this strategy. Note that the strategy carries forward the Special

Case for Position 1 branch discussed in the previous section. The rules are listed in

Appendix G.

For simplicity, the model asserts that a third eye and mouse movement will never be

necessary. For the small amount of error introduced in these models, the first movement

will rarely fall more than one menu item away from the target, in which case the correct

location information will be readily available for the second eye and hand movement.

Exactly Known Location Model

Running the Immediate Look, Point, Check and Correct strategy in EPIC with

exactly known location information reveals the baseline prediction of the strategy, before

adding any error to the initial eye and hand movement location. The results from running

this model are shown in Figure 4.16. Each predicted selection time is averaged from one

83

Eyes and cursor are on GO
box. Target text is in WM.

Click on GO box.

Move eyes and cursor to
anticipated target location.

Target
is “1”?

Click on GO box

Wait for label of
item 1 to appear.

Click again.

No Yes

Cursor
lands on
target?

Yes

Move eyes and cursor to
correct target location.

No

Click on target

Figure 4.15. The Immediate Look, Point, Check and
Correct strategy.

trial run for every menu length and Serial Position combination.

As can be seen in Figure 4.16, the model does not account for the data. But the

results are informative nonetheless. The model’s predictions for the first three Serial

Positions are very close to the observed, and with roughly the same negatively accelerated

slope as the data. The model underpredicts for Serial Positions 4 and above, which might

be remedied by adding some error to the model that would sometimes make necessary a

second, corrective eye and hand movement.

Approximately Known Location Model

The Immediate Look, Point, Check and Correct model run with approximately

known location information represents the belief that people can anticipate the location of a

target in a menu before the menu actually appears, but that people can anticipate the location

of items higher in the menu more accurately than items lower in the menu. Approximately

known locations are introduced to the model by means of the target-location-with-error

84

0

200

400

600

800

1000

S
el

ec
ti

o
n

 T
im

e
(m

se
c)

0 1 2 3 4 5 6 7 8 9
Serial Position

1.3.34-1T-0.0e

Predicted, click-open

Predicted, walking

Observed, click-open

Observed, walking

Figure 4.16. Selection times observed by Nilsen and predicted by the
Immediate Look, Point, Check and Correct strategy run with exact
location knowledge.

named location. As discussed in Section 3.3.4, this named location is computed at the

beginning of every trial by first computing the exactly correct location, and then perturbing

the vertical component of that location. The error increases as a function of the distance

from the GO box to the target, and as a function of a constant error coefficient e.

The results from running the Immediate Look, Point, Check and Correct strategy

with an initial error coefficient e = 0.1 are shown in Figure 4.17. The value of 0.1 was

chosen iteratively to provide a similar slope as that of the data. Three hundred trial runs

were executed for every unique combination of menu length, Serial Position, and menu

style. The predictions in Figure 4.17 average those results.

As can be seen in Figure 4.17, the model comes very close to explaining the

observed data. The predicted values have almost exactly the same negatively accelerated

slope as the observed data, and are very close to the observed data, but the model’s

predictions are a little too slow for how quickly people accomplished this task.

Perhaps the overall high speed of the observed data results because people are able

prepare and execute complex and subtle combinations of movements as if they were a

single movement. For example, perhaps people can prepare and execute a compound click-

and-point movement, a movement style not currently implemented in EPIC. To explore

85

0

200

400

600

800

1000

1200

S
el

ec
ti

o
n

 T
im

e
(m

se
c)

0 1 2 3 4 5 6 7 8 9
Serial Position

1.3.34-300T-0.1e

Predicted, click-open

Predicted, walking

Observed, click-open

Observed, walking

Figure 4.17. Selection times observed by Nilsen and predicted by
the Immediate Look, Point, Check and Correct strategy run with
approximate location knowledge (e = 0.1).

this possibility, the tentative new click-and-point compound movement style, discussed in

Section 3.3.3, is used in the next model.

Introducing the click-and-point compound movement style to the Immediate Look,

Point, Check and Correct model represents a hypothesis that, since the destination of the

initial mouse point can be determined in advance, the motor preparation for the point

movement can also be partly prepared in tandem with the first mouse click.

Click-and-Point Compound Movement Style Model

The results from running the Immediate Look, Point, Check and Correct strategy

with an initial location error coefficient e = 0.1 and a click-and-point compound movement

style are shown in Figure 4.18. The predictions in Figure 4.18 average the results from

three hundred trial runs executed for every unique combination of menu length, Serial

Position, and menu style.

As can be seen in Figure 4.18, this model explains the observed data very well,

with an average absolute error of 3.92%. This model demonstrates that two problems with

the Immediate Look, Point, and Click models—increasing the Fitts’ coefficients and

asserting perfect location knowledge—can be overcome by a more subtle analysis of the

86

0

200

400

600

800

1000

S
el

ec
ti

o
n

 T
im

e
(m

se
c)

0 1 2 3 4 5 6 7 8 9
Serial Position

1.3.34-300T-0.1e-ft3-nup

Predicted, click-open

Predicted, walking

Observed, click-open

Observed, walking

Figure 4.18. Selection times observed by Nilsen and predicted by
the Immediate Look, Point, Check and Correct strategy run with
approximate location knowledge (e = 0.1) and with a click-and-point
compound movement style.

task and a more detailed representation of the perceptual-motor activity required to

accomplish the task.

4.3 Discussion

4 .3 .1 Further Support of the Models

The level of detail and completeness of these models lends them to a wide variety of

testing and validation, including with eye movement studies. Two recent independent eye

movement studies evaluate the Dual Strategy Varying Distance Hybrid (DSVDH) model for

randomly ordered menus presented in Section 4.1.2. Both studies support the major

findings of the model.

Aaltonen, Hyrskykari, and Räihä (1998) ran an experiment in which they presented

participants with pull-down menus containing names or concepts grouped by category, and

asked participants to find specific targets in the menus. They collected eye movement data

that support the two major conclusions of DSVDH model—that people process menu items

in parallel, and that search is both random and systematic. They went so far as to state:

87

“The average saccade length... was 2.21 menu items. This supports the parallel search

strategy (suggested by Hornof and Kieras [1997]) where more than one menu item are

processed at a time.” As well, Aaltonen, Hyrskykari, and Räihä observed systematic top-

to-bottom scan paths on some trials, and more random scan paths on other trials.

Byrne et al. (1999) presented participants with pull-down menus containing

numbers or letters, randomly re-ordered for each trial, in an experiment that closely

resembled Nilsen’s. The Byrne et al. study was designed in part to evaluate the plausibility

of the DSVDH model. The various data reported in the study support several aspects of the

DSVDH model, as follows.

The eye movement data from Byrne et al. support the major conclusions of the

DSVDH model—that people process menu items in parallel, and that search is both random

and systematic. The data indicate that participants executed fewer fixations per item than

would be required by serial processing, indicating parallel consideration of items. The data

revealed more fixations to lower items when the target was lower in the screen—suggesting

systematic search—but with a lot of noise in the actual fixation locations—suggesting

random search.

The selection time data from Byrne et al. (1999), shown in Figure 4.19, also

support the DSVDH model’s finding that the menu length effect in Nilsen’s data results

from an interaction between random search and menu length. The menu length effect,

though persistent in all Serial Positions in Nilsen’s data, mostly disappears for Serial

Positions 2 through 4 in Byrne et al.’s data. This is what the DSVDH model would predict

if the first random eye movement were constrained to the first few menu items. This would

be a reasonable constraint when modeling the data from Byrne et al. because the experiment

was not blocked by menu length, as was Nilsen’s. Hence, participants in Byrne et al.’s

experiment could not anticipate the menu length before the menu appeared, and would

likely confine their first eye movement to a location where they would be confident a menu

item would appear.

88

0

500

1000

1500

2000

S
el

ec
ti

o
n

 T
im

e
(m

se
c)

0 1 2 3 4 5 6 7 8 9 10 11 12
Serial Position

Byrne et al. (1999) RT data

Six items

Nine items

Twelve items

Figure 4.19. Observed data from Byrne et al. (1999). Mean selection
times as a function of the Serial Position of target item, for menus
with six, nine, or twelve items. The disappearance of the menu length
effect in Serial Positions 2 through 4 would be predicted by the
DSVDH strategy if the first random eye movement were constrained
to land on one of the first few items.

Lastly, the mouse movement data collected by Byrne et al. support the DSVDH

model’s assumption that, in a high speed menu task, people wait until they have found the

target and then execute one mouse point to the target. A single aimed movement to a target,

such as a mouse point to a known menu location, is likely to contain several submovements

(Meyer, Abrams, Kornblum, Wright & Smith, 1988; Meyer, Smith, Kornblum, Abrams &

Wright, 1990; Rosenbaum, 1991). Fitts’ law predicts the total time required for all of the

submovements that together comprise a single aimed movement (Meyer et al., 1988; Meyer

et al., 1990; Rosenbaum, 1991). The Byrne et al. data indicate that, for each trial, the

initial submovement covered an average of two-thirds of the distance to the correct target

location, and that there was on average 1 to 1.6 total submovements. These are the

submovements that would be expected as part of a single aimed movement to the correct

target location, such as the mouse point in the DSVDH model, but not what would be

expected of submovements made while dragging the mouse down the menu while

searching, as several researchers assume is the case.

All in all, the data provided by Aaltonen, Hyrskykari, and Räihä (1998) and Byrne

89

et al. (1999) provide strong support for the assumptions and conclusions of the models

presented in this dissertation.

4 .3 .2 Comparison to a Menu Model in ACT-R

This section compares the EPIC models presented above to menu selection models

built by Anderson et al. (1998; 1997) using another cognitive architecture, ACT-R

(Anderson, 1993). The ACT-R models attempt to explain Nilsen’s randomly ordered

menu data.

ACT-R was originally developed as a model of higher cognition, but it has recently

been updated to account for visual attention (Anderson & Lebiere, 1998). Nilsen’s (1991)

menu selection task is one of visually intensive tasks that Anderson et al. have modeled

using ACT-R with its new visual interface.

The predictions of the EPIC and ACT-R models are shown in Figure 4.20. As can

be seen, the EPIC model better predicts the data. For randomly ordered menus, the EPIC

model has an average absolute error of only 3%, and the ACT-R model has an average

absolute error of 12%. The EPIC model accounts for all of the features in the observed

data: the slope, the Position 1 effect, and the menu length effect. The ACT-R model

accounts only for the slope.

There are other differences between the two models.

The EPIC architecture and thus the EPIC models make specific assertions regarding

eye movements. The ACT-R model “moves attention,” and the relationship between ACT-

R’s attentional shifts and physical eye movements is unclear.

The EPIC models specifically account for the mouse movement time that was part

of Nilsen’s observed selection time. The ACT-R model assumes that mouse movement

time was 0 msec based on an assumption that “subjects tend to move the mouse down as

they scan for the target” (Anderson et al., 1997, p.456), so no mouse movement is

required once the target has been found. But empirical evidence (Byrne et al., 1999)

90

0

500

1000

1500

S
e

le
c

ti
o

n
 T

im
e

 (
m

s
e

c
)

0 1 2 3 4 5 6 7 8 9

Serial Position

0

500

1000

1500

S
e

le
c

ti
o

n
 T

im
e

 (
m

s
e

c
)

0 1 2 3 4 5 6 7 8 9

Serial Position

EPIC DSVDH model
for randomly ordered
menus, AAE 3%

EPIC ILPCC model for
numerically ordered
menus, AAE 4%

ACT-R model for
randomly ordered
menus, AAE 12%

Observed

Predicted

Figure 4.20. Selection times observed by Nilsen and predicted
by the EPIC and ACT-R menu selection models, for both
randomly and numerically ordered menus. The EPIC models are
the Dual Strategy Varying Distance Hybrid (DSVDH) model and
the Immediate Look, Point, Check and Correct (ILPCC) model.
Also, the average absolute error (AAE) of each model.

suggests that participants did not move the mouse until after they found the target.

On a theoretical level, the EPIC and ACT-R models for randomly ordered menus

take different approaches to modeling the data. The EPIC model distributes the activities of

perception and visual search more throughout the model, using EPIC’s retinal zones and

perceptual encodings to account for the availability of simple perceptual features, but the

strategic component to account for how a person might use the perceptual information to

guide the search. The ACT-R model, however, folds most of the perception and search-

91

related activity into a single complex encoding of stimulus features, which are then made

available to a simple, two-rule, purely serial, purely systematic search strategy.

4.4 Conclusion

The models presented in this chapter provide plausible explanations for the

perceptual, cognitive, and motor processing required for selecting a known target item from

a pull-down menu, either an unfamiliar randomly ordered menu, or a familiar ordered

menu. The next and final chapter will discuss the contributions these models, and

implications for future research.

CHAPTER 5

CONTRIBUTIONS AND IMPLICATIONS

This dissertation demonstrates that for a very important practical application in the

context of human-computer interaction, a detailed computational model of the mental and

physical processes embodied in the human user provides detailed theoretical, empirical, and

practical insights with which to understand the user and make fundamental improvements

to software and hardware design. Specifically, these insights are relevant to addressing

basic issues associated with graphical interface design that relate to computational cognitive

modeling, visual search, menu search, and manual motor control. The contributions in

these areas, as well as implications for future research, will now be discussed.

5.1 Further Validation of Cognitive Modeling

These models presented in this dissertation contribute to the study of computational

cognitive modeling by further validating the principles, assertions, assumptions, and

conventions embodied in EPIC. These models apply EPIC to a new set of data and to a

new aspect of human performance—visual search. EPIC’s ability to explain the data with

straightforward strategies and perceptual encodings, and with minor enhancements to the

architecture, provides further evidence that the architecture captures the fundamental

processes, memories, and timings of human perception, cognition, and action. The menu

models demonstrate that EPIC is particularly well-equipped to investigate previously

disconnected theories of visual search and eye movements, and to provide a solid

foundation for further investigation into visual search and other aspects of human

performance.

92

93

Besides validating EPIC, the models also stimulate architectural enhancements to

EPIC. This serves as a reminder that the EPIC architecture is built from the ground up to

represent only the fixed components of the human information processor. Several

conditions must exist before an architectural modification will be considered: empirical

evidence, sound theoretical foundation, and reliable data that cannot be explained by

straightforward inputs to EPIC. The two enhancements proposed in this dissertation—the

visual recoding after saccade function and the click-and-point compound movement

style—result from these conditions being met.

5.2 A Unified Theory of Visual Search

The models in this dissertation integrate research from many different studies and

from several different fields, and synthesize previous research into a unified theory of

visual search within a unified theory of cognition. These dynamic computational models

incorporate and subsume previous descriptive and mathematical models of visual search

and eye movement generation, including elements of Treisman’s (1986) theory of parallel

and serial feature extraction, Russo’s (1978) models of cognition and eye movement

integration, and various researchers’ theories regarding eye movement preparation and

execution (such as those reviewed by Rosenbaum, 1991).

The models for randomly ordered menus utilize the parallelism built into the EPIC

architecture to combine previous research into a new theory of overlapped eye-movement

programming and visual object evaluation. The basic theory is that people conduct the two

processes independently and in parallel: (a) moving their eyes around a scene as quickly as

possible, using only the object properties of appearance and location, and (b) evaluating

whether or not the target object has been viewed yet. These models demonstrate various

interactions between the two processes. For example, when it takes longer to identify a

target than to program the next saccade, a person might actually foveate the target but

continue scanning before realizing he or she just looked at the target; in such a situation, an

94

eye movement would be needed to return the gaze to the target.

The models provide new theoretical, empirical, and practical insights into

fundamental aspects visual search. The models for randomly ordered menus, for example,

propose two complementary ideas of how more than one visual object can be processed

simultaneously in a visual search task.

The first idea is that visual objects can be pipelined. People can begin the

processing required for one object before they have completed the processing of a previous

object, and thus have several objects moving from the eye to visual WM at the same time,

each item in a different stage of processing.

The second idea is that further parallelism is possible when more than one visual

object fits into the fovea simultaneously. This in effect widens the pipeline, allowing

several objects to fit into each stage of the pipeline at the same time. This does not assert a

“spotlight of attention” within the fovea, as some researchers propose, but instead assumes

that everything in the fovea begins moving to the visual WM at the same time. This idea

helps to explain why people can scan vertical lists more rapidly than horizontal lists, and

has many implications for screen layout design.

The models also offer a broader view of visual search strategies. As discussed in

Section 2.3.3, previous research contends that menu search is either random or systematic.

The Dual Strategy Varying Distance Hybrid (DSVDH) model for randomly ordered menus

proposes and demonstrates that it can actually be both. In the DSVDH model, each trial is

all random or all the systematic. Future work will determine exactly how elements of both

are incorporated into a single search trial. This research has advanced the question from

“random or systematic?” to “exactly how both random and systematic?”

5.3 New Insights into Menu Search

This dissertation provides new theoretical and empirical insight into the fundamental

human information processing involved in the visual search of computer menus, insights

95

that have implications for fundamental improvements in the design of menus.

Previous theories of menu search, though supported by empirical data, emphasized

the cognitive strategies involved in menu search and said little or nothing about the

perceptual and motoric processing involved. As a result, previous models were

incomplete, made implausible assumptions, and led to lengthy debate regarding some

aspects of menu search while remaining silent regarding others. For example, the

extensive debate about whether menu search is random or systematic (such as between

Card, 1983, and MacGregor and Lee, 1987) implicitly assumed serial consideration of

items. The models presented here account for all of the processing required and, as a

result, offer new insight.

The models provide theoretical validation for several of the hypotheses about menu

search discussed in Section 2.3.3, including (a) that people learn where things are, (b) that

search is both random and systematic, and (c) that people terminate the search when they

find the target. The models also support the hypothesis that search and selection are

independent to the extent that, in a high speed menu task, people will not drag the cursor

down the menu as each item is considered; but that search and selection are overlapped in

that mouse movement preparation will occur before the target is found.

The models suggest that the hypothesis that people serially process one menu item

at a time is incorrect. Rather, the models support a new hypothesis, that people consider

several menu items in parallel. Parallel consideration of objects is not a new notion to

cognitive psychology, but this is the first model of menu search model to incorporate the

idea.

The models offer the first theory-based explanation for several previously

unexplained phenomena in menu selection studies, including (a) the Position 1 effect, (b)

the menu length effect, and (c) a longer search time for items lower in a positionally

constant menu.

The Position 1 effect is that selecting a target in Position 1 is consistently slower

96

than in Position 2. This effect first appeared in data collected by Somberg (1982), and

more recently in that of Nilsen (1991) and Byrne et al. (1999) The DSVDH model

reproduces the effect by incorporating two different features into the model—more than one

item fitting into the fovea at a time, and random search. These two features interact,

creating a situation in which items at both ends of the menu have an overall lower

probability of being in the fovea after any given fixation, and thus will have an overall

slower selection time. This is a unique explanation for this phenomena that was made

possible by building computational cognitive models, running the models, generating the

data, observing the replication of the Position 1 effect, and studying the information

processing traces provided by EPIC to determine the source of the effect in the model.

When explanations for how random and systematic search are incorporated into a single

strategy are developed, even more subtle explanations for the Position 1 effect should

become available.

The menu length effect is that a target item can be selected in a shorter menu faster

than in a longer menu, even when the target is in the same Serial Position. This effect was

reported by Perlman (1984) and Nilsen (1991). The DSVDH model demonstrates that this

effect occurs in randomly ordered menus as a result of random search interacting with the

menu length.

A longer search time for items lower in a positionally constant menu was observed

by Perlman (1984) and Somberg (1987). The effect was observed despite selection being

held constant by selecting with a keystroke rather than a mouse movement. The target-

location-with-error named location incorporated into the Immediate Look, Point, Check and

Correct (ILPCC) model for numerically ordered menus offers a theory-based explanation

for this phenomena, as well as a characterization of the error in movements to known

locations, error that increases for targets further from the starting position.

Early indications are that the principles embodied in the DSVDH and ILPCC

models will be able to contribute to a priori predictions of other menu selection data.

97

0

500

1000

1500

2000

S
e

le
c

ti
o

n
 T

im
e

 (
m

s
e

c
)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Serial Position

alphabetically ordered words
(Sears and Shneiderman, 1994)

numerically ordered digits
(Nilsen, 1991)

Figure 5.1. Selection time as a function of the Serial Position of
the target item, for menus of alphabetically ordered words and
numerically ordered digits. Selection time for words and digits
increase at the same rate, but words consistently require an
additional 850 msec.

Figure 5.1 shows Sears and Shneiderman’s (1994) data for alphabetically ordered words

next to Nilsen’s (1991) for numerically ordered digits. Participants consistently required

an additional 850 msec for the word menus. The ILPCC should be able to account for this

data after the model is expanded to simulate the additional eye movements and processing

that would be required to scan and evaluate words rather than digits.

5.4 Implications for Menu Design Guidelines

When designers better understand the human information processing involved in

looking for something on a menu, they will be able to design menus that are easier for

people to use. Without scientific theory to guide them, however, designers will work in

the dark, using only their intuitions of how people will use their menus. Previous

researchers have assumed that people consider each menu item one at a time. Based on

menu items used in commercial applications, designers have evidently made the same

98

assumption.

The menu shown in Figure 5.2, for example, does not fully support parallel

consideration of adjacent items. When a person is looking for the command to correct

misspellings in a document, “Spell” is a more relevant keyword than “Check.” But “Spell”

will not be captured in a maximally efficient foveal sweep of the leftmost word of every

menu item, and a slower more thorough scan will be required. The designer’s decision to

use “Check Spelling...” instead of “Spelling...” is likely based on an intuition that people

will examine each menu item from beginning to end before proceeding to the next item.

New insights such as these provide a scientific basis for evaluating existing and

establishing new menu design guidelines. A contradiction between existing guidelines that

can now be addressed is whether menu items should be consistent in grammatical style

(Mayhew, 1992) or begin with a keyword (Shneiderman, 1992). Perhaps there are

benefits to using a consistent grammatical style, such as learnability or simplicity of design.

But based on the notion of a maximally efficient foveal sweep, starting each menu item

with the keyword should help a user to find a known target more quickly. Perhaps these

two guidelines can be combined into “If the system will be used by novices, make menu

Select All

Search...
Find next "sea..."

Check Spelling...
Change Case...

Time Stamp...

Date Stamp...

Rapid
eye
fixations

Figure 5.2. If a user is looking for the keyword “Spelling”
and makes a maximally efficient foveal sweep down the left
edge of these menu items, he or she will miss the target.
(This menu is from MORE 3.1 by Symantec.)

99

items consistent in grammatical style. But if the system will be used primarily by

experienced users, line up the keywords above and below each other in the leftmost

position of each menu item.”

A new guideline might be simply “Make sure initial parts of words are distinctive

and not obscured. For example, starting each item with a bullet or other irrelevant marker

could increase search time.” Aaltonen et al. (1998) observed that non-text items such as

checkmarks to indicate status and shortcut key information tend to attract people’s attention

during menu search. The little icons to the left of the text items in the Microsoft Windows

NT menu in Figure 2.2 will hinder an efficient visual search if the user makes a maximally

efficient foveal sweep of the icons rather than the words, and if some of the icons are

meaningless.

Another guideline that can be proposed based on these models is that menu search

should not be constrained by mouse movements. An extreme violation of this guideline is

a menu in which every item is invisible except for the menu item where the mouse cursor is

currently pointing. Such a menu might seem obviously unusable, but slightly less extreme

violations are quite common. Many icon menus, such as the menu shown in Figure 5.3,

require the user to move the cursor to the icon in order to display a text description of the

item. To use this menu, the user must either spend a lot of time learning the exact meaning

of every icon or, more likely, move the cursor over each item, wait for the text description

to appear, examine the text, and then move the mouse to the next item. Such a menu does

not readily support a high speed visual search.

Interestingly, the models can also inform the design of auditory menus. In

Figure 5.3. Some menus require the user to move the mouse
cursor to the item to determine what the item is. Such menus
result in very slow visual search. (Netscape Navigator 3.04 for
the Macintosh)

100

auditory menus, users listen to options and make selections based on what they hear. One

common use of auditory menus is in telephone information systems, as in “For flight

arrival and departure information, please press 1....” Auditory menus are also incorporated

into eyes-free interfaces that improve accessibility for blind users (Raman, 1997), and are

likely to be incorporated into automotive information systems.

Though there are clearly many differences between visual and auditory perception,

there are also similarities between the two. For example, vision and audition both impose a

delay between the onset of the physical stimulus and the arrival of stimulus properties in

WM, and both allow new stimuli to begin being processed while earlier stimuli are still

being processed further down the pipeline. These similarities allow the DSVDH model to

inform the design of auditory menus.

The DSVDH model demonstrates that people do not decide on one menu item

before moving to the next, but instead move to and examine the next item before deciding

on the previous item. Such a highly efficient search can made possible with an auditory

menu by giving users a “forward” button that interrupts the current option and immediately

starts the next, a “backward” button that interrupts and immediately starts the previous

option, and a “select” button to select the current option. Resnick and Virzi (1993) built

such a system and found that people could select a name from a list significantly faster with

their new “skip and scan” menu than with the more typical “For Joe, press 1. For

Michelle, press 2....”.

The parallel processing models suggest that a “skip and scan” menu system could

be optimized if users could be confident that the first ≈250 msec of a option would be

enough to identify the option. This could be done by putting the key syllable first, similar

to the above recommendation for visual menus, and also by providing other auditory cues

such as different voices and sound effects. Users could then press the “forward” button

four times a second and, as people seemed to be doing in the visual menu experiments,

move through an audio menu at high speed, not waiting to evaluate each item before

101

moving to the next, and find the target as quickly as possible. Instant access to the

“backward” command is critical in such an interface because, as in the menu models above,

it is possible that a user might skip over the target before realizing that they had done so,

and need to backup to select the target.

5.5 New Insights into Manual Motor Control

The models presented here contribute to an understanding of fundamental aspects of

manual motor control, specifically with respect to interface analysis and design. The

DSVDH and ILPCC models both provide further validation of standard Fitts’ coefficients

of 100 for a mouse point and 140 for a mouse point with the mouse button depressed. The

value of 100 is the only Fitts coefficient in the literature proposed for predicting mouse

movement time (Card et al., 1983). The value of 140 is the only coefficient available in the

literature for a pure pointing task with the mouse button depressed (Walker et al., 1993).

The DSVDH model and the ILPCC model use these coefficients and successfully generate

predictions that account for the “button depression effect” observed by Nilsen (1991), as

can be seen in Figure 5.4. The models thus provide independent validation that these are

appropriate values for using Fitts’ law for a priori predictions of movement times for

mouse points.

The models of numerically ordered menus explore the possibility that Nilsen’s data

could be explained by simply raising the Fitts’ coefficients. One reason that such

exploration is at all feasible is that the literature reports a wide variety of Fitts’ coefficients

for predicting mouse pointing times. Even though Fitts’ law is regarded by human-

computer interaction researchers as an equation for predicting mouse pointing time, Fitts’

coefficients are usually treated as free parameters and set after analyzing a new set of data.

There has not been a systematic effort to calibrate Fitts’ law for a variety pointing devices

and tasks and, as a result, Fitts’ law has questionable utility for making a priori predictions.

A more systematic effort is needed to collect consistent and reliable coefficients.

102

0

500

1000

1500

S
e

le
c

ti
o

n
 T

im
e

 (
m

s
e

c
)

0 1 2 3 4 5 6 7 8 9
Serial Position

Both models side by side

Randomly
ordered
menus

Numerically
ordered menus

Predicted
Observed

Figure 5.4. The DSVDH and ILPCC models’ predictions for,
respectively, Nilsen’s randomly and numerically ordered menu data.
All are collapsed by menu length and expanded by menu style. For
each ordering, the “button depression effect” is the difference
between the walking () and click-open () selection times. The
button depression effect is explained very well by Fitts’ coefficients
of 100 and 140.

5.6 Future Modeling of Menu Search

Future improvements to the menu models will increase their predictive power and

provide new insights with which to improve software and hardware design. One future

research goal is to precisely model the new empirical data from Byrne et al. (1999) and

Nilsen and Evans (1999).

Another important research challenge is to build a model that incorporates elements

of both random and systematic search into the same trial, and still accounts for Nilsen’s

(1991) data. The DSVDH model assumes people use either completely random or

completely systematic search strategies for each trial. This assertion merits investigation.

One way that a model could incorporate both random and systematic search into a

single trial would be to use a strategy that makes a maximally efficient downward foveal

sweep, as illustrated in Figure 3.7, but adds random noise to each saccade distance. When

a saccade distance is too great, items would getting skipped. An additional sweep would

103

be required to capture the skipped items. If every item in the menu has a chance of getting

skipped, this would add an element of randomness to every position. The randomness

would not be part of a deliberate strategy, but a result of a noisy systematic strategy.

A second way that randomness could be incorporated into a maximally efficient

foveal sweep would be to limit the number of objects whose movement to visual WM can

be initiated during each fixation. For example, even if more than three items fit into the

fovea during a fixation, perhaps only three randomly chosen items would begin moving to

WM from that fixation; additional items, though in the fovea, would get skipped and

require an additional sweep to be perceived.

A third way that randomness could be added to a systematic scan would be to vary

the size of the fovea from saccade to saccade. EPIC models currently set the fovea as a

circular region with a radius of one degree of visual angle. Varying this radius would

allow models, across trials, to simulate a more gradual degradation of property availability

around the edges of the fovea and to more realistically model human vision. Nilsen and

Evans (1999) suggest this modification to the DSVDH model to explain new empirical data

that they collected.

5.7 Future Modeling of General Visual Search

An important component of future research will be to build models of more general

visual search tasks. The menu models in this dissertation provide an excellent foundation

for building models of more general visual search.

In a more general visual search task, visual objects are more widely dispersed

across the screen than in a menu task. Figures 5.5 and 5.6 illustrate more general visual

search tasks. The task in Figure 5.5 is a real-world task; in Figure 5.6, an experimental

task. Though one might expect that an experiment using the task in 5.6 would be relatively

uninformative because of the simplicity of the task, reliable data from such an experiment

will reveal fundamental aspects of visual search and guide model-building.

104

Figure 5.5. Find the “Case Sensitive” check box. This is a more
general visual search task than finding an item in a pull-down menu.
(From BBEdit 3.5.2 by Bare Bones Software)

222

333

444111

BOT

CAW
DOZ

FIM
GUW

HAP
KIY

LOD

MUV

NAR

PEQ

ROV

JEX SUW

TAQ

VIQ

WOB
ZEL

BAW
CEN

DUN

FOB

GUCHEV

JIV

KOL

LUJ MIW
NOL

PUW

RUP

SAQ

TEV

VIW

WOD

ZUC

555666

SAQ111

Figure 5.6. Find the “SAQ” object in the “111” group. This is a
less real-world task than that shown in Figure 5.5. But reliable data
from such a task can reveal fundamental aspects of visual search.

Though visual search has been studied at length (see Section 2.2), there are few if

any available experimental data sets that lend themselves to building models of the same

detail and accuracy as the menu selection models presented in this dissertation. One

105

shortcoming of most published data sets is that selection times are usually averaged across

all positions on a screen. Nilsen’s data were particularly useful for revealing search

strategies because they included average selection times for every Serial Position.

Nilsen’s experiment was also particularly useful for model-building because it

manipulated few factors—ordering, length, and style (walking versus click-open)—and

because these few manipulations produced reliable effects in the data that were sufficiently

detailed and distinct to guide the model-building process. These effects included the menu

length effect, Serial Position effect, Position 1 effect, and others.

A challenge in designing a more general visual search experiment will be to select

and manipulate factors that, like Nilsen’s, produce reliable effects in the data and guide the

model-building process. Here is a list of each factor that might be manipulated, why it is of

particular interest, the effect that would likely be observed when varying the factor, and

how the effect would likely be explained in a model:

1. Factor: Number of items.

Why of interest: This should produce an effect akin to the menu length
effect in Nilsen’s experiment, which proved invaluable for revealing
underlying search processes.

Likely effect: More items should increase overall search time.

How to model: Extend the existing menu models to search in two
dimensions.

2. Factor: Group titles present or absent.

Why of interest: This factor will introduce another level of search.
There should be one search for the group, and then a second search
within the group for the target.

Likely effect: When group titles are available, search should be faster.

How to model: When titles are present, conduct an initial search that
only examines the group headings. When titles are absent, search every
item.

3. Factor: Alignment.

Why of interest: A basic principle of graphic design is that visual
objects should be arranged in a highly regular pattern, such as on a grid
that is consistent from page to page or screen to screen (Müller-
Brockmann, 1981). Varying the extent to which objects are aligned on

106

a grid might affect aspects of visual search.

Likely effect: Good alignment should be faster.

How to model: When objects are poorly aligned, additional saccades
may be required to foveate all objects. Also, there may be fewer
identical consecutive saccades, so EPIC will have fewer opportunities to
re-use the ocular-motor program from the previous saccade, and more
saccade preparation time will be required.

4. Factor: Spacing.

Why of interest: Varying the visual angle between adjacent items
should affect the number of eye movements required to examine every
item on a screen, and thus overall search time. Nilsen and Evans (1999)
recently demonstrated that spacings of one and two degrees do not
produce dramatically different search times. More investigation is in
order.

Likely effect: More space between items should increase overall search
time.

How to model: Just extend the existing menu models to search in two
dimensions. The models already require more eye movements to get all
of the objects into the fovea at least once when menu items are more
spread out.

5. Factor: Horizontal versus vertical arrangements.

Why of interest: As discussed in Section 2.3.2, vertical lists of words
can be searched more rapidly that horizontal lists. Collecting precise
data that demonstrates this phenomena could lead to a detailed
explanation of the source of the phenomena.

Likely effect: Vertical lists will be faster.

How to model: Just extend the existing menu models to search in two
dimensions. Horizontal lists will require more eye movements to get all
of the objects into the fovea at least once.

6. Factor: The type of objects searched.

Why of interest: This should help to reveal why some kinds of objects
can be found more rapidly than others, such as icons versus text.

Likely effect: Some kinds objects will be found more quickly than
others.

How to model: Calibrate the perceptual encoding availabilities and
delays for each kind of object.

7. Factor: Use of primary features.

Why of interest: Primary features such as size, color, shape, or
orientation are known to “pop out.” A comprehensive search model
would have to account for this phenomena.

Likely effect: Targets that can be distinguished by a single primary
feature will be found quickly.

107

How to model: Make primary features available outside of the fovea.
Interrupt any search in progress as soon as a primary feature
distinguishing the target appears in visual WM.

Modeling new data sets will be challenging. But lessons learned from the menu

models will help to guide the process. Once a sufficient body of visual search data has

been modeled, the various models and strategies can be combined into a visual search

prediction tool.

5.8 Building a Screen Layout Analysis Tool

Insights gained from the modeling of more general visual search tasks will inform

the design and construction of a screen layout analysis tool that will contribute to

fundamental improvements in the design of human-computer interfaces. This tool will

evaluate screen layouts based on the amount of time required to find information on the

screen, and provide software designers with useful feedback as they design their software.

The tool will take as input a definition of a screen layout and a visual search task. The tool

will provide as output a prediction of the time required for the user to execute the task.

Designers will use this information to compare alternative designs and to meet system

requirements specifications.

The current menu models provide the basics for the search engine of such a tool.

The inputs to the tool—a screen layout and a search task—could be translated into inputs to

an EPIC model. The EPIC model could then generate a prediction that would be reported

to the designer.

Such an approach to building a predictive tool would improve on the systems

developed by Tullis (1988) and Sears (1993), which were discussed in Section 2.2.4. The

tool would improve on Tullis’ Display Analysis Program (DAP) by making more specific

predictions for a wider variety of tasks. DAP only predicts for alphanumeric screens, and

only makes one time prediction per screen. The tool would improve on Sears’ Layout

Appropriateness (LA) by predicting search times rather than just computing an arbitrary

108

cost for each layout that is then compared to the cost of a theoretically LA-optimal layout.

The proposed tool would most closely resemble Lohse’s (1993) tool for

Understanding Cognitive Information Engineering (UCIE). UCIE predicts how long a

person will take to answer a question by studying a graph or table. Just like the models

presented here, UCIE accounts for specific, detailed aspects of perception and cognition

such as eye movements and the relative level of difficulty to acquire information in each

glance. UCIE generates its predictions by executing a simulation of all of the processing

required for a task.

The proposed tool would improve upon UCIE by incorporating more subtle and

detailed aspects of visual search, such as the ability to perceive multiple objects with the

same fixation, to pipeline several visual objects to visual WM at the same time, and to

overlap perceptual and motor activities. A tool based on more detailed models should

provide more accurate predictions of visual search.

The tool will work as follows. First, the designer will propose a screen layout and

a specific task or set of tasks. For example, given the web page shown in Figure 5.7, how

long will it take for someone to find all of the links to other pages? Second, an EPIC

model will be semi-automatically constructed and executed as follows:

1. A digital bitmap of the screen layout is imported into the tool and encoded
into visual objects or regions, such as those shown in Figure 5.8. In
early versions of the tool, the designer will manually specify the
boundaries. In later versions, the process will be more automated.

2. The features of the screen objects and regions defined in step 1 are
defined, features such as color and shape. In early versions of the tool,
the designer will manually enter these descriptions into a text file. In later
versions, this step will eventually be somewhat automated.

3. The designer lists all of the meanings of non-text objects that he or she
expects the user to know, such as meanings of icons. This forces the
designer to articulate his or her assumptions, which can then be critiqued
separately.

4. Based on the visual information provided in steps 1, 2, and 3, a
description of each item is deposited into EPIC’s physical space.

5. Standard visual recoding delays, taken from previous modeling efforts,
are imposed for each visual feature.

109

Figure 5.7. A screen layout that could be used as an input to a screen layout
analysis tool. This is the main web page for undergraduate engineering
computer support services at the University of Michigan in early 1997.
(http://www.engin.umich.edu/caen/, 3/10/97)

6. A general visual search strategy is applied to the task. The strategy
includes the following components:

a. For the most part, conduct maximally efficient foveal sweeps of the
layout but, occasionally, make a random jump to a randomly chosen
item on the screen.

b. Move the eyes as quickly as possible without waiting to evaluate each
item.

c. Consider items in parallel whenever possible.

d. Decide where to move eyes next based on proximity, whether or not
the items have been in the fovea yet, and primary features such as
size, shape, and color.

e. Halt the search as soon as the target text or the icon corresponding to
the target text is found.

The EPIC model will execute and the search strategy will halt when the task is

completed. The model will be executed several times and the predicted task execution times

from all executions will be averaged. The tool will then report this average prediction as

110

001 text "caen"
002

005 text

003 icon
004

006 text "University of Michigan" 007 text "College of Engineering"

008 icon

009 text "Printing"

010 icon

011 text "Projects..."

012 icon

013 text "Network..."

014 icon

015 text "Work..."
016 icon

017 text

018 icon

019 text "Supp..."

020 icon

021 text

Figure 5.8. The visual regions and objects corresponding to the screen
layout shown in Figure 5.7. This is spatial information that would be used
by the screen layout analysis tool to predict visual search times.

the output of the tool. Different screen layouts can be compared and the most efficient one

chosen.

111

5.9 Concluding Remarks

When using a computer, a substantial amount of time is spent looking for things in

menus and elsewhere on the computer screen. As the field of human-computer interaction

gains a better understanding of the perceptual, cognitive, and motor processes that people

use when they conduct a visual search, researchers can better advise practitioners how to

design menus and computer layouts that are easier to use. The advice can be in the form of

explanations of human processes, theoretically-based guidelines, and model-based

predictive tools.

By assembling what is currently known about visual search and menu search, and

presenting the first empirically validated computational models of the perceptual, cognitive,

and motor processes involved in the visual search of pull-down menus, this dissertation

makes a contribution towards providing a scientific foundation for designing computer

menus and screen layouts that are easier to search, and thus computers that are easier to

use.

112

APPENDIX A

THE SERIAL PROCESSING RANDOM SEARCH STRATEGY

;;
;; NILSEN.1.2.2.PRS By Anthony Hornof
;; 8/22/96
;; Random, fixate on each, serial decision.
;;

(CHOICE-Start
IF
((GOAL DO MENU TASK)
 (NOT (WM MENU TASK UNDERWAY)))
THEN
((ADDDB (WM MENU TASK UNDERWAY))
 (SEND-TO-MOTOR OCULAR DISABLE REFLEX)
 (SEND-TO-MOTOR MANUAL RESET MEMORY)
 (ADDDB (STEP IDENTIFY-CURSOR))))

;;
(START-CURSOR-TRACKING
IF
((GOAL DO MENU TASK)
 (STEP IDENTIFY-CURSOR)
 (VISUAL ?OBJECT SHAPE CROSS))
THEN
((DELDB (STEP IDENTIFY-CURSOR))
 (ADDDB (STEP WAIT FOR GO BOX))
 (ADDDB (WM CURSOR IS ?OBJECT))
 (DELDB (VISUAL ?OBJECT DETECTION ONSET))))

;;
(LOOK-AT-GO-BOX
 ;; Just looks at the visual object that appears next.
 IF
 ((GOAL DO MENU TASK)
 (STEP WAIT FOR GO BOX)
 (VISUAL ?OBJECT DETECTION ONSET)
 (USE-ONLY-ONE ?OBJECT)
 (MOTOR OCULAR PROCESSOR FREE))
 THEN
 ((DELDB (STEP WAIT FOR GO BOX))
 (ADDDB (STEP VERIFY GO BOX TEXT))
 (SEND-TO-MOTOR OCULAR MOVE ?OBJECT)))

;;
(VERIFY-GO-BOX
 ;; Verify the new thing that appeared really is the GO box.
 IF
 ((GOAL DO MENU TASK)
 (STEP VERIFY GO BOX TEXT)
 (VISUAL ?OBJECT LABEL GO)
 (MOTOR OCULAR PROCESSOR FREE))
 THEN
 ((DELDB (STEP VERIFY GO BOX TEXT))
 (ADDDB (STEP MOVE CURSOR TO GO BOX))
 (ADDDB (WM GO BOX IS ?OBJECT))
 (SEND-TO-MOTOR OCULAR MOVE ?OBJECT)))

;;
(MOVE-CURSOR-TO-GO-BOX

113

 IF
 ((GOAL DO MENU TASK)
 (STEP MOVE CURSOR TO GO BOX)
 (WM CURSOR IS ?CURSOR-OBJECT)
 (WM GO BOX IS ?TARGET-OBJECT)
 (MOTOR MANUAL PROCESSOR FREE)
)
 THEN
 ((SEND-TO-MOTOR MANUAL PERFORM POINT RIGHT ?CURSOR-OBJECT ?TARGET-OBJECT)
 (DELDB (STEP MOVE CURSOR TO GO BOX))
 (ADDDB (STEP MOVE GAZE TO TARGET PRECUE))))

;;
(MOVE-GAZE-TO-TARGET-PRECUE
;; After the precue has appeared with its onset, move the eyes to it.
;; But only move eyes to it if it is just above the GO-BOX.
IF
((GOAL DO MENU TASK)
 (STEP MOVE GAZE TO TARGET PRECUE)
 (WM GO BOX IS ?GO-BOX)
 (VISUAL ?OBJECT IS-ABOVE ?GO-BOX)
 (MOTOR OCULAR PROCESSOR FREE))
THEN
((DELDB (STEP MOVE GAZE TO TARGET PRECUE))
 (ADDDB (STEP GET TARGET PRECUE))
 (ADDDB (WM PRECUE IS ?OBJECT))
 (SEND-TO-MOTOR OCULAR MOVE ?OBJECT)))

;;
(GET-TARGET-PRECUE
;; Put the text of the precue object into WM as the target text.
IF
((GOAL DO MENU TASK)
 (STEP GET TARGET PRECUE)
 (WM PRECUE IS ?OBJECT)
 (VISUAL ?OBJECT LABEL ?PRECUE-TEXT))
THEN
((DELDB (STEP GET TARGET PRECUE))
 (ADDDB (STEP MOVE GAZE BACK TO GO BOX))
 (ADDDB (WM TARGET-TEXT IS ?PRECUE-TEXT))))

;;
(MOVE-GAZE-BACK-TO-GO-BOX
;; Move gaze back in preparation to start the trial.
IF
((GOAL DO MENU TASK)
 (STEP MOVE GAZE BACK TO GO BOX)
 (WM GO BOX IS ?OBJECT)
 (MOTOR OCULAR PROCESSOR FREE))
THEN
((DELDB (STEP MOVE GAZE BACK TO GO BOX))
 (ADDDB (STEP PRESS OR PUNCH MOUSE-BUTTON TO SHOW MENU))
 (SEND-TO-MOTOR OCULAR MOVE ?OBJECT)))

;;
;; THESE TWO RULES SHOULD MATCH EXCEPT FOR "PRESS/PUNCH" AND "MENU STYLE".
;;
(PRESS-MOUSE-BUTTON-TO-SHOW-MENU
IF
((STRATEGY MENU STYLE IS WALKING)
 (GOAL DO MENU TASK)
 (STEP PRESS OR PUNCH MOUSE-BUTTON TO SHOW MENU)
 (WM GO BOX IS ?OBJECT)
 (MOTOR MANUAL PROCESSOR FREE)

114

 (MOTOR OCULAR PROCESSOR FREE))
THEN
((SEND-TO-MOTOR MANUAL PERFORM PRESS MOUSE-BUTTON)
 (DELDB (STEP PRESS OR PUNCH MOUSE-BUTTON TO SHOW MENU))
 (ADDDB (STEP SACCADE TO FIRST RANDOMLY CHOSEN ITEM))
 (DELDB (WM GO BOX IS ?OBJECT))))
;;
(PUNCH-MOUSE-BUTTON-TO-SHOW-MENU
IF
((STRATEGY MENU STYLE IS CLICK-OPEN)
 (GOAL DO MENU TASK)
 (STEP PRESS OR PUNCH MOUSE-BUTTON TO SHOW MENU)
 (WM GO BOX IS ?OBJECT)
 (MOTOR MANUAL PROCESSOR FREE)
 (MOTOR OCULAR PROCESSOR FREE))
THEN
((SEND-TO-MOTOR MANUAL PERFORM PUNCH MOUSE-BUTTON)
 (DELDB (STEP PRESS OR PUNCH MOUSE-BUTTON TO SHOW MENU))
 (ADDDB (STEP SACCADE TO FIRST RANDOMLY CHOSEN ITEM))
 (DELDB (WM GO BOX IS ?OBJECT))))
;;

;;
(PREPARE-POINT
;; As soon as possible after press or first punch, prepare for mouse movement.
IF
((GOAL DO MENU TASK)
 (STEP SACCADE TO FIRST RANDOMLY CHOSEN ITEM)
 (VISUAL ?FIRST-ITEM IS-BELOW NOTHING)
 (VISUAL ?FIRST-ITEM IS-ABOVE ?SECOND-ITEM)
 (WM CURSOR IS ?CURSOR)
 (MOTOR MANUAL PROCESSOR FREE))
THEN
((SEND-TO-MOTOR MANUAL PREPARE POINT RIGHT ?CURSOR ?SECOND-ITEM)))

;;
(SACCADE-TO-FIRST-RANDOMLY-CHOSEN-ITEM
;; Saccade to any item.
IF
((GOAL DO MENU TASK)
 (STEP SACCADE TO FIRST RANDOMLY CHOSEN ITEM)
 (VISUAL ?OBJECT IN-MENU YES)
 (RANDOMLY-CHOOSE-ONE ?OBJECT)
 (MOTOR OCULAR PROCESSOR FREE)
)
THEN
((DELDB (STEP SACCADE TO FIRST RANDOMLY CHOSEN ITEM))
 (ADDDB (STEP RANDOM VISUAL SEARCH))
 (ADDDB (WM CURRENT-ITEM IS ?OBJECT))
 (SEND-TO-MOTOR OCULAR MOVE ?OBJECT)))

;;
(TARGET-IS-NOT-LOCATED-SACCADE-TO-ANOTHER-RANDOMLY-CHOSEN-ITEM
;; If this is NOT the target, then continue random search.
IF
((GOAL DO MENU TASK)
 (STEP RANDOM VISUAL SEARCH)
 (WM CURRENT-ITEM IS ?CURRENT-OBJECT)
 (VISUAL ?CURRENT-OBJECT LABEL ?NT) ;; Wait for text to appear.
 (NOT (WM TARGET-TEXT IS ?NT)) ;; It is not the target text.
 (VISUAL ?NEXT-OBJECT IN-MENU YES) ;; Get ready for next random saccade.
 (NOT (WM CURRENT-ITEM IS ?NEXT-OBJECT))
 (RANDOMLY-CHOOSE-ONE ?NEXT-OBJECT)
 (MOTOR OCULAR PROCESSOR FREE))

115

THEN
((DELDB (WM CURRENT-ITEM IS ?CURRENT-OBJECT))
 (ADDDB (WM CURRENT-ITEM IS ?NEXT-OBJECT))
 (SEND-TO-MOTOR OCULAR MOVE ?NEXT-OBJECT)))

;;
(TARGET-IS-LOCATED-MOVE-GAZE-AND-CURSOR-TO-TARGET
;; Decides you found the item during the visual sweep.
IF
((GOAL DO MENU TASK)
 (STEP RANDOM VISUAL SEARCH)
 (WM CURRENT-ITEM IS ?TARGET-OBJECT) ;; To distinguish from the precue.
 (VISUAL ?TARGET-OBJECT LABEL ?T) ;; Wait for text to appear.
 (WM TARGET-TEXT IS ?T) ;; It IS the target text
 (WM CURSOR IS ?CURSOR-OBJECT)
 (MOTOR OCULAR PROCESSOR FREE)
 (MOTOR MANUAL PROCESSOR FREE))
THEN
((DELDB (STEP RANDOM VISUAL SEARCH))
 (ADDDB (STEP RELEASE OR PUNCH MOUSE BUTTON))
 (SEND-TO-MOTOR OCULAR MOVE ?TARGET-OBJECT)
 (SEND-TO-MOTOR MANUAL PERFORM POINT RIGHT ?CURSOR-OBJECT ?TARGET-OBJECT)))

;;
;; THESE TWO RULES SHOULD MATCH EXCEPT FOR "RELEASE/PUNCH" AND "MENU STYLE".
;;
(RELEASE-MOUSE-BUTTON-ON-TARGET
IF
((STRATEGY MENU STYLE IS WALKING)
 (GOAL DO MENU TASK)
 (STEP RELEASE OR PUNCH MOUSE BUTTON)
 (MOTOR MANUAL PROCESSOR FREE))
THEN
((SEND-TO-MOTOR MANUAL PERFORM RELEASE MOUSE-BUTTON)
 (DELDB (STEP RELEASE OR PUNCH MOUSE BUTTON))
 (ADDDB (STEP WAIT FOR GO BOX))
 (ADDDB (STEP CLEANUP))))
;;
(PUNCH-MOUSE-BUTTON-ON-TARGET
IF
((STRATEGY MENU STYLE IS CLICK-OPEN)
 (GOAL DO MENU TASK)
 (STEP RELEASE OR PUNCH MOUSE BUTTON)
 (MOTOR MANUAL PROCESSOR FREE))
THEN
((SEND-TO-MOTOR MANUAL PERFORM PUNCH MOUSE-BUTTON)
 (DELDB (STEP RELEASE OR PUNCH MOUSE BUTTON))
 (ADDDB (STEP WAIT FOR GO BOX))
 (ADDDB (STEP CLEANUP))))
;;

;;
;these rules clean up whatever needs to be cleaned up after the response
(CLEANUP-STEP-CLEANUP
IF
((GOAL DO MENU TASK)
 (STEP CLEANUP))
THEN
((DELDB (STEP CLEANUP))))

(CLEANUP-TARGET-OBJECT
IF
((GOAL DO MENU TASK)
 (STEP CLEANUP)

116

 (WM TARGET-OBJECT IS ?OBJECT))
THEN
((DELDB (WM TARGET-OBJECT IS ?OBJECT))))

(CLEANUP-CURRENT-ITEM
IF
((GOAL DO MENU TASK)
 (STEP CLEANUP)
 (WM CURRENT-ITEM IS ?X))
THEN
((DELDB (WM CURRENT-ITEM IS ?X))))

(CLEANUP-PRECUE
IF
((GOAL DO MENU TASK)
 (STEP CLEANUP)
 (WM PRECUE IS ?X))
THEN
((DELDB (WM PRECUE IS ?X))))

(CLEANUP-TARGET-TEXT
IF
((GOAL DO MENU TASK)
 (STEP CLEANUP)
 (WM TARGET-TEXT IS ?X))
THEN
((DELDB (WM TARGET-TEXT IS ?X))))

117

APPENDIX B

THE SERIAL PROCESSING SYSTEMATIC SEARCH STRATEGY

;;
;; NILSEN.1.2.1.PRS By Anthony Hornof
;; 8/21/96
;; Systematic top-to-bottom, fixate on each, serial decision.
;;

(CHOICE-Start
IF
((GOAL DO MENU TASK)
 (NOT (WM MENU TASK UNDERWAY)))
THEN
((ADDDB (WM MENU TASK UNDERWAY))
 (SEND-TO-MOTOR OCULAR DISABLE REFLEX)
 (SEND-TO-MOTOR MANUAL RESET MEMORY)
 (ADDDB (STEP IDENTIFY-CURSOR))))

;;
(START-CURSOR-TRACKING
IF
((GOAL DO MENU TASK)
 (STEP IDENTIFY-CURSOR)
 (VISUAL ?OBJECT SHAPE CROSS))
THEN
((DELDB (STEP IDENTIFY-CURSOR))
 (ADDDB (STEP WAIT FOR GO BOX))
 (ADDDB (WM CURSOR IS ?OBJECT))
 (DELDB (VISUAL ?OBJECT DETECTION ONSET))))

;;
(LOOK-AT-GO-BOX
 ;; Just looks at the visual object that appears next.
 IF
 ((GOAL DO MENU TASK)
 (STEP WAIT FOR GO BOX)
 (VISUAL ?OBJECT DETECTION ONSET)
 (USE-ONLY-ONE ?OBJECT)
 (MOTOR OCULAR PROCESSOR FREE))
 THEN
 ((DELDB (STEP WAIT FOR GO BOX))
 (ADDDB (STEP VERIFY GO BOX TEXT))
 (SEND-TO-MOTOR OCULAR MOVE ?OBJECT)))

;;
(VERIFY-GO-BOX
 ;; Verify the new thing that appeared really is the GO box.
 IF
 ((GOAL DO MENU TASK)
 (STEP VERIFY GO BOX TEXT)
 (VISUAL ?OBJECT LABEL GO)
 (MOTOR OCULAR PROCESSOR FREE))
 THEN
 ((DELDB (STEP VERIFY GO BOX TEXT))
 (ADDDB (STEP MOVE CURSOR TO GO BOX))
 (ADDDB (WM GO BOX IS ?OBJECT))
 (SEND-TO-MOTOR OCULAR MOVE ?OBJECT)))

;;
(MOVE-CURSOR-TO-GO-BOX

118

 IF
 ((GOAL DO MENU TASK)
 (STEP MOVE CURSOR TO GO BOX)
 (WM CURSOR IS ?CURSOR-OBJECT)
 (WM GO BOX IS ?TARGET-OBJECT)
 (MOTOR MANUAL PROCESSOR FREE)
)
 THEN
 ((SEND-TO-MOTOR MANUAL PERFORM POINT RIGHT ?CURSOR-OBJECT ?TARGET-OBJECT)
 (DELDB (STEP MOVE CURSOR TO GO BOX))
 (ADDDB (STEP MOVE GAZE TO TARGET PRECUE))))

;;
(MOVE-GAZE-TO-TARGET-PRECUE
;; After the precue has appeared with its onset, move the eyes to it.
;; But only move eyes to it if it is just above the GO-BOX.
IF
((GOAL DO MENU TASK)
 (STEP MOVE GAZE TO TARGET PRECUE)
 (WM GO BOX IS ?GO-BOX)
 (VISUAL ?OBJECT IS-ABOVE ?GO-BOX)
 (MOTOR OCULAR PROCESSOR FREE))
THEN
((DELDB (STEP MOVE GAZE TO TARGET PRECUE))
 (ADDDB (STEP GET TARGET PRECUE))
 (ADDDB (WM PRECUE IS ?OBJECT))
 (SEND-TO-MOTOR OCULAR MOVE ?OBJECT)))

;;
(GET-TARGET-PRECUE
;; Put the text of the precue object into WM as the target text.
IF
((GOAL DO MENU TASK)
 (STEP GET TARGET PRECUE)
 (WM PRECUE IS ?OBJECT)
 (VISUAL ?OBJECT LABEL ?PRECUE-TEXT))
THEN
((DELDB (STEP GET TARGET PRECUE))
 (ADDDB (STEP MOVE GAZE BACK TO GO BOX))
 (ADDDB (WM TARGET-TEXT IS ?PRECUE-TEXT))))

;;
(MOVE-GAZE-BACK-TO-GO-BOX
;; Move gaze back in preparation to start the trial.
IF
((GOAL DO MENU TASK)
 (STEP MOVE GAZE BACK TO GO BOX)
 (WM GO BOX IS ?OBJECT)
 (MOTOR OCULAR PROCESSOR FREE))
THEN
((DELDB (STEP MOVE GAZE BACK TO GO BOX))
 (ADDDB (STEP PRESS OR PUNCH MOUSE-BUTTON TO SHOW MENU))
 (SEND-TO-MOTOR OCULAR MOVE ?OBJECT)))

;;
;; THESE TWO RULES SHOULD MATCH EXCEPT FOR "PRESS/PUNCH" AND "MENU STYLE".
;;
(PRESS-MOUSE-BUTTON-TO-SHOW-MENU
IF
((STRATEGY MENU STYLE IS WALKING)
 (GOAL DO MENU TASK)
 (STEP PRESS OR PUNCH MOUSE-BUTTON TO SHOW MENU)
 (WM GO BOX IS ?OBJECT)
 (MOTOR MANUAL PROCESSOR FREE)

119

 (MOTOR OCULAR PROCESSOR FREE))
THEN
((SEND-TO-MOTOR MANUAL PERFORM PRESS MOUSE-BUTTON)
 (DELDB (STEP PRESS OR PUNCH MOUSE-BUTTON TO SHOW MENU))
 (ADDDB (STEP FIX GAZE ON TOP MENU ITEM))
 (DELDB (WM GO BOX IS ?OBJECT))))
;;
(PUNCH-MOUSE-BUTTON-TO-SHOW-MENU
IF
((STRATEGY MENU STYLE IS CLICK-OPEN)
 (GOAL DO MENU TASK)
 (STEP PRESS OR PUNCH MOUSE-BUTTON TO SHOW MENU)
 (WM GO BOX IS ?OBJECT)
 (MOTOR MANUAL PROCESSOR FREE)
 (MOTOR OCULAR PROCESSOR FREE))
THEN
((SEND-TO-MOTOR MANUAL PERFORM PUNCH MOUSE-BUTTON)
 (DELDB (STEP PRESS OR PUNCH MOUSE-BUTTON TO SHOW MENU))
 (ADDDB (STEP FIX GAZE ON TOP MENU ITEM))
 (DELDB (WM GO BOX IS ?OBJECT))))
;;

;;
(PREPARE-POINT
;; As soon as possible after press or first punch, prepare for mouse movement.
IF
((GOAL DO MENU TASK)
 (STEP FIX GAZE ON TOP MENU ITEM)
 (VISUAL ?OBJECT DETECTION ONSET)
 (VISUAL ?OBJECT IS-BELOW NOTHING)
 (WM CURSOR IS ?CURSOR-OBJECT)
 (VISUAL ?OBJECT IS-ABOVE ?PLY-PREPARE-OBJECT)
 (MOTOR MANUAL PROCESSOR FREE))
THEN
((SEND-TO-MOTOR MANUAL PREPARE POINT RIGHT ?CURSOR-OBJECT ?PLY-PREPARE-OBJECT)))

;;
(FIX-GAZE-ON-TOP-ITEM
;; Move eye to FIRST item on list.
IF
((GOAL DO MENU TASK)
 (STEP FIX GAZE ON TOP MENU ITEM)
 (VISUAL ?OBJECT DETECTION ONSET)
 (VISUAL ?OBJECT IS-BELOW NOTHING)
 (MOTOR OCULAR PROCESSOR FREE))
THEN
((DELDB (STEP FIX GAZE ON TOP MENU ITEM))
 (ADDDB (STEP VISUAL-SEARCH))
 (SEND-TO-MOTOR OCULAR MOVE ?OBJECT)
 (ADDDB (WM CURRENT-ITEM IS ?OBJECT))))

;;
(TARGET-IS-NOT-LOCATED-SACCADE-ONE-ITEM
;; If this is NOT the target, then continue down the list.
IF
((GOAL DO MENU TASK)
 (STEP VISUAL-SEARCH)
 (WM CURRENT-ITEM IS ?OBJECT)
 (VISUAL ?OBJECT IS-ABOVE ?NEXT-OBJECT)
 (NOT (VISUAL ?OBJECT IS-ABOVE NOTHING))
 (MOTOR OCULAR PROCESSOR FREE)
 (VISUAL ?OBJECT LABEL ?NT) ;; Wait for text to appear.
 (NOT (WM TARGET-TEXT IS ?NT)) ;; It is not the target text.
)

120

THEN
((DELDB (WM CURRENT-ITEM IS ?OBJECT))
 (ADDDB (WM CURRENT-ITEM IS ?NEXT-OBJECT))
 (SEND-TO-MOTOR OCULAR MOVE ?NEXT-OBJECT)))

;;
(TARGET-IS-LOCATED-MOVE-GAZE-AND-CURSOR-TO-TARGET
;; Decides you found the item during the visual sweep.
IF
((GOAL DO MENU TASK)
 (STEP VISUAL-SEARCH)
 (WM CURRENT-ITEM IS ?TARGET-OBJECT) ;; To distinguish from the precue.
 (VISUAL ?TARGET-OBJECT LABEL ?T) ;; Wait for text to appear.
 (WM TARGET-TEXT IS ?T) ;; It IS the target text
 (WM CURSOR IS ?CURSOR-OBJECT)
 (MOTOR OCULAR PROCESSOR FREE)
 (MOTOR MANUAL PROCESSOR FREE))
THEN
((DELDB (STEP VISUAL-SEARCH))
 (ADDDB (STEP RELEASE OR PUNCH MOUSE BUTTON))
 (SEND-TO-MOTOR OCULAR MOVE ?TARGET-OBJECT)
 (SEND-TO-MOTOR MANUAL PERFORM POINT RIGHT ?CURSOR-OBJECT ?TARGET-OBJECT)))

;;
;; THESE TWO RULES SHOULD MATCH EXCEPT FOR "RELEASE/PUNCH" AND "MENU STYLE".
;;
(RELEASE-MOUSE-BUTTON-ON-TARGET
IF
((STRATEGY MENU STYLE IS WALKING)
 (GOAL DO MENU TASK)
 (STEP RELEASE OR PUNCH MOUSE BUTTON)
 (MOTOR MANUAL PROCESSOR FREE))
THEN
((SEND-TO-MOTOR MANUAL PERFORM RELEASE MOUSE-BUTTON)
 (DELDB (STEP RELEASE OR PUNCH MOUSE BUTTON))
 (ADDDB (STEP WAIT FOR GO BOX))
 (ADDDB (STEP CLEANUP))))
;;
(PUNCH-MOUSE-BUTTON-ON-TARGET
IF
((STRATEGY MENU STYLE IS CLICK-OPEN)
 (GOAL DO MENU TASK)
 (STEP RELEASE OR PUNCH MOUSE BUTTON)
 (MOTOR MANUAL PROCESSOR FREE))
THEN
((SEND-TO-MOTOR MANUAL PERFORM PUNCH MOUSE-BUTTON)
 (DELDB (STEP RELEASE OR PUNCH MOUSE BUTTON))
 (ADDDB (STEP WAIT FOR GO BOX))
 (ADDDB (STEP CLEANUP))))
;;

;;
;these rules clean up whatever needs to be cleaned up after the response
(CLEANUP-STEP-CLEANUP
IF
((GOAL DO MENU TASK)
 (STEP CLEANUP))
THEN
((DELDB (STEP CLEANUP))))

(CLEANUP-TARGET-OBJECT
IF
((GOAL DO MENU TASK)
 (STEP CLEANUP)

121

 (WM TARGET-OBJECT IS ?OBJECT))
THEN
((DELDB (WM TARGET-OBJECT IS ?OBJECT))))

(CLEANUP-CURRENT-ITEM
IF
((GOAL DO MENU TASK)
 (STEP CLEANUP)
 (WM CURRENT-ITEM IS ?X))
THEN
((DELDB (WM CURRENT-ITEM IS ?X))))

(CLEANUP-PRECUE
IF
((GOAL DO MENU TASK)
 (STEP CLEANUP)
 (WM PRECUE IS ?X))
THEN
((DELDB (WM PRECUE IS ?X))))

(CLEANUP-TARGET-TEXT
IF
((GOAL DO MENU TASK)
 (STEP CLEANUP)
 (WM TARGET-TEXT IS ?X))
THEN
((DELDB (WM TARGET-TEXT IS ?X))))

122

APPENDIX C

THE PARALLEL PROCESSING RANDOM SEARCH STRATEGY

;;
;; NILSEN.1.2.6.PRS By Anthony Hornof
;; Random, anticipatory first saccade, next item always out of fovea,
;; parallel decision
;;

(CHOICE-Start
IF
((GOAL DO MENU TASK)
 (NOT (WM MENU TASK UNDERWAY)))
THEN
((ADDDB (WM MENU TASK UNDERWAY))
 (SEND-TO-MOTOR OCULAR DISABLE REFLEX)
 (SEND-TO-MOTOR OCULAR DISABLE CENTERING)
 (SEND-TO-MOTOR MANUAL RESET MEMORY)
 (ADDDB (STEP IDENTIFY-CURSOR))))

;;
(START-CURSOR-TRACKING
IF
((GOAL DO MENU TASK)
 (STEP IDENTIFY-CURSOR)
 (VISUAL ?OBJECT SHAPE CROSS))
THEN
((DELDB (STEP IDENTIFY-CURSOR))
 (ADDDB (STEP WAIT FOR GO BOX))
 (ADDDB (WM CURSOR IS ?OBJECT))
 (DELDB (VISUAL ?OBJECT DETECTION ONSET))))

;;
(LOOK-AT-GO-BOX
 ;; Just looks at the visual object that appears next.
 IF
 ((GOAL DO MENU TASK)
 (STEP WAIT FOR GO BOX)
 (VISUAL ?OBJECT DETECTION ONSET)
 (USE-ONLY-ONE ?OBJECT)
 (MOTOR OCULAR PROCESSOR FREE))
 THEN
 ((DELDB (STEP WAIT FOR GO BOX))
 (ADDDB (STEP VERIFY GO BOX TEXT))
 (SEND-TO-MOTOR OCULAR MOVE ?OBJECT)))

;;
(VERIFY-GO-BOX
 ;; Verify the new thing that appeared really is the GO box.
 IF
 ((GOAL DO MENU TASK)
 (STEP VERIFY GO BOX TEXT)
 (VISUAL ?OBJECT LABEL GO)
 (MOTOR OCULAR PROCESSOR FREE))
 THEN
 ((DELDB (STEP VERIFY GO BOX TEXT))
 (ADDDB (STEP MOVE CURSOR TO GO BOX))
 (ADDDB (WM GO BOX IS ?OBJECT))
 (SEND-TO-MOTOR OCULAR MOVE ?OBJECT)))

;;

123

(MOVE-CURSOR-TO-GO-BOX
 IF
 ((GOAL DO MENU TASK)
 (STEP MOVE CURSOR TO GO BOX)
 (WM CURSOR IS ?CURSOR-OBJECT)
 (WM GO BOX IS ?TARGET-OBJECT)
 (MOTOR MANUAL PROCESSOR FREE)
)
 THEN
 ((SEND-TO-MOTOR MANUAL PERFORM POINT RIGHT ?CURSOR-OBJECT ?TARGET-OBJECT)
 (DELDB (STEP MOVE CURSOR TO GO BOX))
 (ADDDB (STEP MOVE GAZE TO TARGET PRECUE))))

;;
(MOVE-GAZE-TO-TARGET-PRECUE
;; After the precue has appeared with its onset, move the eyes to it.
;; But only move eyes to it if it is just above the GO-BOX.
IF
((GOAL DO MENU TASK)
 (STEP MOVE GAZE TO TARGET PRECUE)
 (WM GO BOX IS ?GO-BOX)
 (VISUAL ?OBJECT IS-ABOVE ?GO-BOX)
 (MOTOR OCULAR PROCESSOR FREE))
THEN
((DELDB (STEP MOVE GAZE TO TARGET PRECUE))
 (ADDDB (STEP GET TARGET PRECUE))
 (ADDDB (WM PRECUE IS ?OBJECT))
 (SEND-TO-MOTOR OCULAR MOVE ?OBJECT)))

;;
(GET-TARGET-PRECUE
;; Put the text of the precue object into WM as the target text.
IF
((GOAL DO MENU TASK)
 (STEP GET TARGET PRECUE)
 (WM PRECUE IS ?OBJECT)
 (VISUAL ?OBJECT LABEL ?PRECUE-TEXT))
THEN
((DELDB (STEP GET TARGET PRECUE))
 (ADDDB (STEP MOVE GAZE BACK TO GO BOX))
 (ADDDB (WM TARGET-TEXT IS ?PRECUE-TEXT))))

;;
(MOVE-GAZE-BACK-TO-GO-BOX
;; Move gaze back in preparation to start the trial.
IF
((GOAL DO MENU TASK)
 (STEP MOVE GAZE BACK TO GO BOX)
 (WM GO BOX IS ?OBJECT)
 (MOTOR OCULAR PROCESSOR FREE))
THEN
((DELDB (STEP MOVE GAZE BACK TO GO BOX))
 (ADDDB (STEP CLICK GO BOX AND MOVE GAZE TO FIRST RANDOM MENU LOCATION))
 (SEND-TO-MOTOR OCULAR MOVE ?OBJECT)))

;;
;; THESE TWO RULES SHOULD MATCH EXCEPT FOR "PRESS/PUNCH" AND "MENU STYLE".
;;
(PRESS-MOUSE-BUTTON-TO-SHOW-MENU
IF
((STRATEGY MENU STYLE IS WALKING)
 (GOAL DO MENU TASK)
 (STEP CLICK GO BOX AND MOVE GAZE TO FIRST RANDOM MENU LOCATION)
 (WM GO BOX IS ?OBJECT)

124

 (MOTOR MANUAL PROCESSOR FREE)
 (MOTOR OCULAR PROCESSOR FREE))
THEN
((SEND-TO-MOTOR MANUAL PERFORM PRESS MOUSE-BUTTON)
 (ADDDB (WM CURRENT-ITEM IS START-POSITION))
 (DELDB (WM GO BOX IS ?OBJECT))))
;;
(PUNCH-MOUSE-BUTTON-TO-SHOW-MENU
IF
((STRATEGY MENU STYLE IS CLICK-OPEN)
 (GOAL DO MENU TASK)
 (STEP CLICK GO BOX AND MOVE GAZE TO FIRST RANDOM MENU LOCATION)
 (WM GO BOX IS ?OBJECT)
 (MOTOR MANUAL PROCESSOR FREE)
 (MOTOR OCULAR PROCESSOR FREE))
THEN
((SEND-TO-MOTOR MANUAL PERFORM PUNCH MOUSE-BUTTON)
 (ADDDB (WM CURRENT-ITEM IS START-POSITION))
 (DELDB (WM GO BOX IS ?OBJECT))))
;;

;;
(SACCADE-TO-RANDOM-LOCATION
;; Saccade to the randomly chosen named location of the first saccade.
IF
((GOAL DO MENU TASK)
 (STEP CLICK GO BOX AND MOVE GAZE TO FIRST RANDOM MENU LOCATION)
 (MOTOR OCULAR PROCESSOR FREE)
)
THEN
((DELDB (STEP CLICK GO BOX AND MOVE GAZE TO FIRST RANDOM MENU LOCATION))
 (ADDDB (STEP RANDOM SEARCH FOR TARGET))
 (SEND-TO-MOTOR OCULAR MOVE FIRST-FIXATION-LOCATION)))

;;
(PREPARE-POINT
;; As soon as possible after punch, prepare for mouse movement.
IF
((GOAL DO MENU TASK)
 (STEP RANDOM SEARCH FOR TARGET)
 (WM CURRENT-ITEM IS START-POSITION)
 (VISUAL ?FIRST-ITEM IS-BELOW NOTHING) ; critical path
 (VISUAL ?FIRST-ITEM IS-ABOVE ?SECOND-ITEM) ; critical path
 (WM CURSOR IS ?CURSOR)
 (MOTOR MANUAL PROCESSOR FREE))
THEN
((SEND-TO-MOTOR MANUAL PREPARE POINT RIGHT ?CURSOR ?SECOND-ITEM)))

;;
(FIRST-SACCADE-TO-RANDOM-ITEM-NOT-IN-FOVEA
;; Make first saccade to random item not currently in the fovea.
IF
((GOAL DO MENU TASK)
 (STEP RANDOM SEARCH FOR TARGET)
 (WM CURRENT-ITEM IS START-POSITION)
 (VISUAL ?OBJECT IN-MENU YES)
 (VISUAL ?OBJECT FOVEA NO) ;; Next object can't be in the fovea now.
 (RANDOMLY-CHOOSE-ONE ?OBJECT)
 (MOTOR OCULAR PROCESSOR FREE)
)
THEN
((DELDB (WM CURRENT-ITEM IS START-POSITION))
 (ADDDB (WM CURRENT-ITEM IS ?OBJECT))
 (SEND-TO-MOTOR OCULAR MOVE ?OBJECT)))

125

;;
(SACCADE-TO-RANDOM-ITEM-NOT-IN-FOVEA
;; Saccade to random item not currently in the fovea.
IF
((GOAL DO MENU TASK)
 (STEP RANDOM SEARCH FOR TARGET)
 (WM CURRENT-ITEM IS ?LAST-OBJECT)
 ;; Wait until it has been established that the new item is in the fovea.
 ;; Otherwise, the foveal info of the other objects is not correct yet either.
 (VISUAL ?LAST-OBJECT FOVEA YES)
 (VISUAL ?OBJECT IN-MENU YES)
 (VISUAL ?OBJECT FOVEA NO) ;; Object can't be in the fovea now.
 (RANDOMLY-CHOOSE-ONE ?OBJECT)
 (MOTOR OCULAR PROCESSOR FREE))
THEN
((DELDB (WM CURRENT-ITEM IS ?LAST-OBJECT))
 (ADDDB (WM CURRENT-ITEM IS ?OBJECT))
 (SEND-TO-MOTOR OCULAR MOVE ?OBJECT)))

;;
(TARGET-IS-LOCATED-STOP-SCANNING
;; Decides you found the item during the visual sweep. 10/26/95 -ajh
;; This extra rule prevents two ocular commands being sent at same time.
IF
((GOAL DO MENU TASK)
 (STEP RANDOM SEARCH FOR TARGET)
 (WM TARGET-TEXT IS ?T)
 (VISUAL ?TARGET-OBJECT LABEL ?T)
 (VISUAL ?TARGET-OBJECT IN-MENU YES) ;; Don't react to the precue!
)
THEN
((DELDB (STEP RANDOM SEARCH FOR TARGET))
 (ADDDB (STEP MOVE-GAZE-AND-CURSOR-TO-TARGET))
 (ADDDB (WM TARGET-OBJECT IS ?TARGET-OBJECT))))

;;
(SCANNING-IS-STOPPED-MOVE-GAZE-AND-CURSOR-TO-TARGET
IF
((GOAL DO MENU TASK)
 (STEP MOVE-GAZE-AND-CURSOR-TO-TARGET)
 (WM TARGET-OBJECT IS ?TARGET-OBJECT)
 (WM CURSOR IS ?CURSOR-OBJECT)
 (MOTOR OCULAR PROCESSOR FREE)
 (MOTOR MANUAL PROCESSOR FREE))
THEN
((DELDB (STEP MOVE-GAZE-AND-CURSOR-TO-TARGET))
 (ADDDB (STEP RELEASE OR PUNCH MOUSE BUTTON))
 (SEND-TO-MOTOR OCULAR MOVE ?TARGET-OBJECT)
 (SEND-TO-MOTOR MANUAL PERFORM POINT RIGHT ?CURSOR-OBJECT ?TARGET-OBJECT)))

;;
;; THESE TWO RULES SHOULD MATCH EXCEPT FOR "RELEASE/PUNCH" AND "MENU STYLE".
;;
(RELEASE-MOUSE-BUTTON-ON-TARGET
IF
((STRATEGY MENU STYLE IS WALKING)
 (GOAL DO MENU TASK)
 (STEP RELEASE OR PUNCH MOUSE BUTTON)
 (MOTOR MANUAL PROCESSOR FREE))
THEN
((SEND-TO-MOTOR MANUAL PERFORM RELEASE MOUSE-BUTTON)
 (DELDB (STEP RELEASE OR PUNCH MOUSE BUTTON))
 (ADDDB (STEP WAIT FOR GO BOX))

126

 (ADDDB (STEP CLEANUP))))
;;
(PUNCH-MOUSE-BUTTON-ON-TARGET
IF
((STRATEGY MENU STYLE IS CLICK-OPEN)
 (GOAL DO MENU TASK)
 (STEP RELEASE OR PUNCH MOUSE BUTTON)
 (MOTOR MANUAL PROCESSOR FREE))
THEN
((SEND-TO-MOTOR MANUAL PERFORM PUNCH MOUSE-BUTTON)
 (DELDB (STEP RELEASE OR PUNCH MOUSE BUTTON))
 (ADDDB (STEP WAIT FOR GO BOX))
 (ADDDB (STEP CLEANUP))))
;;

;;
;these rules clean up whatever needs to be cleaned up after the response
(CLEANUP-STEP-CLEANUP
IF
((GOAL DO MENU TASK)
 (STEP CLEANUP))
THEN
((DELDB (STEP CLEANUP))))

(CLEANUP-TARGET-OBJECT
IF
((GOAL DO MENU TASK)
 (STEP CLEANUP)
 (WM TARGET-OBJECT IS ?OBJECT))
THEN
((DELDB (WM TARGET-OBJECT IS ?OBJECT))))

(CLEANUP-CURRENT-ITEM
IF
((GOAL DO MENU TASK)
 (STEP CLEANUP)
 (WM CURRENT-ITEM IS ?X))
THEN
((DELDB (WM CURRENT-ITEM IS ?X))))

(CLEANUP-PRECUE
IF
((GOAL DO MENU TASK)
 (STEP CLEANUP)
 (WM PRECUE IS ?X))
THEN
((DELDB (WM PRECUE IS ?X))))

(CLEANUP-TARGET-TEXT
IF
((GOAL DO MENU TASK)
 (STEP CLEANUP)
 (WM TARGET-TEXT IS ?X))
THEN
((DELDB (WM TARGET-TEXT IS ?X))))

127

APPENDIX D

THE PARALLEL PROCESSING SYSTEMATIC SEARCH STRATEGY

;;
;; NILSEN.1.2.7.PRS By Anthony Hornof
;; 8/24/96
;; Systematic top-to-bottom, fixate on each, serial decision.
;; Eye starts on any randomly chosen item that insures the first item
;; will fall in fovea.
;;

;;
(CHOICE-Start
IF
((GOAL DO MENU TASK)
 (NOT (WM MENU TASK UNDERWAY)))
THEN
((ADDDB (WM MENU TASK UNDERWAY))
 (SEND-TO-MOTOR OCULAR DISABLE REFLEX)
 (SEND-TO-MOTOR OCULAR DISABLE CENTERING)
 (SEND-TO-MOTOR MANUAL RESET MEMORY)
 (ADDDB (STEP IDENTIFY-CURSOR))))

;;
(START-CURSOR-TRACKING
IF
((GOAL DO MENU TASK)
 (STEP IDENTIFY-CURSOR)
 (VISUAL ?OBJECT SHAPE CROSS))
THEN
((DELDB (STEP IDENTIFY-CURSOR))
 (ADDDB (STEP WAIT FOR GO BOX))
 (ADDDB (WM CURSOR IS ?OBJECT))
 (DELDB (VISUAL ?OBJECT DETECTION ONSET))))

;;
(LOOK-AT-GO-BOX
 ;; Just looks at the visual object that appears next.
 IF
 ((GOAL DO MENU TASK)
 (STEP WAIT FOR GO BOX)
 (VISUAL ?OBJECT DETECTION ONSET)
 (USE-ONLY-ONE ?OBJECT)
 (MOTOR OCULAR PROCESSOR FREE))
 THEN
 ((DELDB (STEP WAIT FOR GO BOX))
 (ADDDB (STEP VERIFY GO BOX TEXT))
 (SEND-TO-MOTOR OCULAR MOVE ?OBJECT)))

;;
(VERIFY-GO-BOX
 ;; Verify the new thing that appeared really is the GO box.
 IF
 ((GOAL DO MENU TASK)
 (STEP VERIFY GO BOX TEXT)
 (VISUAL ?OBJECT LABEL GO)
 (MOTOR OCULAR PROCESSOR FREE))
 THEN
 ((DELDB (STEP VERIFY GO BOX TEXT))
 (ADDDB (STEP MOVE CURSOR TO GO BOX))
 (ADDDB (WM GO BOX IS ?OBJECT))

128

 (SEND-TO-MOTOR OCULAR MOVE ?OBJECT)))

;;
(MOVE-CURSOR-TO-GO-BOX
 IF
 ((GOAL DO MENU TASK)
 (STEP MOVE CURSOR TO GO BOX)
 (WM CURSOR IS ?CURSOR-OBJECT)
 (WM GO BOX IS ?TARGET-OBJECT)
 (MOTOR MANUAL PROCESSOR FREE)
)
 THEN
 ((SEND-TO-MOTOR MANUAL PERFORM POINT RIGHT ?CURSOR-OBJECT ?TARGET-OBJECT)
 (DELDB (STEP MOVE CURSOR TO GO BOX))
 (ADDDB (STEP MOVE GAZE TO TARGET PRECUE))))

;;
(MOVE-GAZE-TO-TARGET-PRECUE
;; After the precue has appeared with its onset, move the eyes to it.
;; But only move eyes to it if it is just above the GO-BOX.
IF
((GOAL DO MENU TASK)
 (STEP MOVE GAZE TO TARGET PRECUE)
 (WM GO BOX IS ?GO-BOX)
 (VISUAL ?OBJECT IS-ABOVE ?GO-BOX)
 (MOTOR OCULAR PROCESSOR FREE))
THEN
((DELDB (STEP MOVE GAZE TO TARGET PRECUE))
 (ADDDB (STEP GET TARGET PRECUE))
 (ADDDB (WM PRECUE IS ?OBJECT))
 (SEND-TO-MOTOR OCULAR MOVE ?OBJECT)))

;;
(GET-TARGET-PRECUE
;; Put the text of the precue object into WM as the target text.
IF
((GOAL DO MENU TASK)
 (STEP GET TARGET PRECUE)
 (WM PRECUE IS ?OBJECT)
 (VISUAL ?OBJECT LABEL ?PRECUE-TEXT))
THEN
((DELDB (STEP GET TARGET PRECUE))
 (ADDDB (STEP MOVE GAZE BACK TO GO BOX))
 (ADDDB (WM TARGET-TEXT IS ?PRECUE-TEXT))))

;;
(MOVE-GAZE-BACK-TO-GO-BOX
;; Move gaze back in preparation to start the trial.
IF
((GOAL DO MENU TASK)
 (STEP MOVE GAZE BACK TO GO BOX)
 (WM GO BOX IS ?OBJECT)
 (MOTOR OCULAR PROCESSOR FREE))
THEN
((DELDB (STEP MOVE GAZE BACK TO GO BOX))
 (ADDDB (STEP CLICK GO BOX AND MOVE GAZE TO FIRST MENU LOCATION))
 (SEND-TO-MOTOR OCULAR MOVE ?OBJECT)))

;;
;; THESE TWO RULES SHOULD MATCH EXCEPT FOR "PRESS/PUNCH" AND "MENU STYLE".
;;
;; Start trial. Have subject wait long enough for ocular motor
;; processor to be free, to make sure the next rule is not delayed
;; due to pre-trial activity. The subject can wait here anyway as

129

;; they memorize the precue.
;;
(PRESS-MOUSE-BUTTON-TO-SHOW-MENU
IF
((STRATEGY MENU STYLE IS WALKING)
 (GOAL DO MENU TASK)
 (STEP CLICK GO BOX AND MOVE GAZE TO FIRST MENU LOCATION)
 (WM GO BOX IS ?OBJECT)
 (MOTOR MANUAL PROCESSOR FREE)
 (MOTOR OCULAR PROCESSOR FREE))
THEN
((SEND-TO-MOTOR MANUAL PERFORM PRESS MOUSE-BUTTON)
 (ADDDB (STEP PREPARE POINT TO TARGET))
 (DELDB (WM GO BOX IS ?OBJECT))))
;;
(PUNCH-MOUSE-BUTTON-TO-SHOW-MENU
IF
((STRATEGY MENU STYLE IS CLICK-OPEN)
 (GOAL DO MENU TASK)
 (STEP CLICK GO BOX AND MOVE GAZE TO FIRST MENU LOCATION)
 (WM GO BOX IS ?OBJECT)
 (MOTOR MANUAL PROCESSOR FREE)
 (MOTOR OCULAR PROCESSOR FREE))
THEN
((SEND-TO-MOTOR MANUAL PERFORM PUNCH MOUSE-BUTTON)
 (ADDDB (STEP PREPARE POINT TO TARGET))
 (DELDB (WM GO BOX IS ?OBJECT))))
;;

;;
(SACCADE-TO-FIRST-LOCATION
;; Move eye to named location of the first fixation.
IF
((GOAL DO MENU TASK)
 (STEP CLICK GO BOX AND MOVE GAZE TO FIRST MENU LOCATION)
 (MOTOR OCULAR PROCESSOR FREE))
THEN
((DELDB (STEP CLICK GO BOX AND MOVE GAZE TO FIRST MENU LOCATION))
 (ADDDB (STEP VISUAL-SWEEP))
 (SEND-TO-MOTOR OCULAR MOVE FIRST-FIXATION-LOCATION)
 (ADDDB (WM CURRENT-ITEM IS FIRST-FIXATION))))

;;
(PREPARE-POINT-NEW
;; As soon as possible after press or first punch, prepare for mouse movement.
IF
((GOAL DO MENU TASK)
 (STEP PREPARE POINT TO TARGET)
 (WM CURSOR IS ?CURSOR-OBJECT)
 (MOTOR MANUAL PROCESSOR FREE))
THEN
((DELDB (STEP PREPARE POINT TO TARGET))
 (SEND-TO-MOTOR MANUAL PREPARE POINT RIGHT ?CURSOR-OBJECT ITEM-LOCATION-3)))

;;
(SACCADE-TO-NEXT-SWEEP-ITEM
;; Saccade down in the list and stay in sweeping mode.
IF
((GOAL DO MENU TASK)
 (STEP VISUAL-SWEEP)
 (WM CURRENT-ITEM IS ?OBJECT)
 (NOT (VISUAL ?OBJECT IS-ABOVE NOTHING)) ;; sit on last item
 (DIFFERENT ?OBJECT ?NEXT-OBJECT) ;; wait until new next is prepared
 (VISUAL GLOBAL-FEATURE NEXT-SWEEP-ITEM ?NEXT-OBJECT)

130

 (MOTOR OCULAR PROCESSOR FREE))
THEN
((DELDB (WM CURRENT-ITEM IS ?OBJECT))
 (ADDDB (WM CURRENT-ITEM IS ?NEXT-OBJECT))
 (SEND-TO-MOTOR OCULAR MOVE ?NEXT-OBJECT)))

;;
(TARGET-IS-LOCATED-STOP-SCANNING
;; Decides you found the item during the visual sweep. 10/26/95 -ajh
;; This extra rule prevents two ocular commands being sent at same time.
IF
((GOAL DO MENU TASK)
 (STEP VISUAL-SWEEP)
 (WM TARGET-TEXT IS ?T)
 (VISUAL ?TARGET-OBJECT LABEL ?T)
 (NOT (VISUAL ?TARGET-OBJECT IN-MENU NO)) ;; Don't react to the precue!
)
THEN
((DELDB (STEP VISUAL-SWEEP))
 (ADDDB (STEP MOVE-GAZE-AND-CURSOR-TO-TARGET))
 (ADDDB (WM TARGET-OBJECT IS ?TARGET-OBJECT))))

;;
(SCANNING-IS-STOPPED-MOVE-GAZE-AND-CURSOR-TO-TARGET
IF
((GOAL DO MENU TASK)
 (STEP MOVE-GAZE-AND-CURSOR-TO-TARGET)
 (WM TARGET-OBJECT IS ?TARGET-OBJECT)
 (WM CURSOR IS ?CURSOR-OBJECT)
 (MOTOR OCULAR PROCESSOR FREE)
 (MOTOR MANUAL PROCESSOR FREE))
THEN
((DELDB (STEP MOVE-GAZE-AND-CURSOR-TO-TARGET))
 (ADDDB (STEP RELEASE OR PUNCH MOUSE BUTTON))
 (SEND-TO-MOTOR OCULAR MOVE ?TARGET-OBJECT)
 (SEND-TO-MOTOR MANUAL PERFORM POINT RIGHT ?CURSOR-OBJECT ?TARGET-OBJECT)))

;;
;; THESE TWO RULES SHOULD MATCH EXCEPT FOR "RELEASE/PUNCH" AND "MENU STYLE".
;;
(RELEASE-MOUSE-BUTTON-ON-TARGET
IF
((STRATEGY MENU STYLE IS WALKING)
 (GOAL DO MENU TASK)
 (STEP RELEASE OR PUNCH MOUSE BUTTON)
 (MOTOR MANUAL PROCESSOR FREE))
THEN
((SEND-TO-MOTOR MANUAL PERFORM RELEASE MOUSE-BUTTON)
 (DELDB (STEP RELEASE OR PUNCH MOUSE BUTTON))
 (ADDDB (STEP WAIT FOR GO BOX))
 (ADDDB (STEP CLEANUP))))
;;
(PUNCH-MOUSE-BUTTON-ON-TARGET
IF
((STRATEGY MENU STYLE IS CLICK-OPEN)
 (GOAL DO MENU TASK)
 (STEP RELEASE OR PUNCH MOUSE BUTTON)
 (MOTOR MANUAL PROCESSOR FREE))
THEN
((SEND-TO-MOTOR MANUAL PERFORM PUNCH MOUSE-BUTTON)
 (DELDB (STEP RELEASE OR PUNCH MOUSE BUTTON))
 (ADDDB (STEP WAIT FOR GO BOX))
 (ADDDB (STEP CLEANUP))))
;;

131

;these rules cleans stuff up after the response
(CLEANUP
IF
((GOAL DO MENU TASK)
 (STEP CLEANUP)
 (WM TARGET-OBJECT IS ?OBJECT)
 (WM CURRENT-ITEM IS ?X)
 (WM PRECUE IS ?Y)
 (WM TARGET-TEXT IS ?Z))
THEN
((DELDB (WM CURRENT-ITEM IS ?X))
 (DELDB (WM TARGET-OBJECT IS ?OBJECT))
 (DELDB (STEP CLEANUP))
 (DELDB (WM PRECUE IS ?Y))
 (DELDB (WM TARGET-TEXT IS ?Z))))

132

APPENDIX E

THE IMMEDIATE LOOK, POINT, AND CLICK STRATEGY

;;
;; NILSEN.1.3.22.PRS By Anthony Hornof
;; 5/28/98
;;

;;
(CHOICE-Start
IF
((GOAL DO MENU TASK)
 (NOT (WM MENU TASK UNDERWAY)))
THEN
((ADDDB (WM MENU TASK UNDERWAY))
 (SEND-TO-MOTOR OCULAR DISABLE REFLEX)
 (SEND-TO-MOTOR OCULAR DISABLE CENTERING)
 (SEND-TO-MOTOR MANUAL RESET MEMORY)
 (ADDDB (STEP IDENTIFY-CURSOR))))

;;
(START-CURSOR-TRACKING
IF
((GOAL DO MENU TASK)
 (STEP IDENTIFY-CURSOR)
 (VISUAL ?OBJECT SHAPE CROSS))
THEN
((DELDB (STEP IDENTIFY-CURSOR))
 (ADDDB (STEP WAIT FOR GO BOX))
 (ADDDB (WM CURSOR IS ?OBJECT))
 (DELDB (VISUAL ?OBJECT DETECTION ONSET))))

;;
(LOOK-AT-GO-BOX
 ;; Just looks at the visual object that appears next.
 IF
 ((GOAL DO MENU TASK)
 (STEP WAIT FOR GO BOX)
 (VISUAL ?OBJECT DETECTION ONSET)
 (VISUAL ?OBJECT IN-MENU NO) ;; so it does not look at a menu item
 (USE-ONLY-ONE ?OBJECT)
 (MOTOR OCULAR PROCESSOR FREE))
 THEN
 ((DELDB (STEP WAIT FOR GO BOX))
 (ADDDB (STEP VERIFY GO BOX TEXT))
 (SEND-TO-MOTOR OCULAR MOVE ?OBJECT)))

;;
(VERIFY-GO-BOX
 ;; Verify the new thing that appeared really is the GO box.
 IF
 ((GOAL DO MENU TASK)
 (STEP VERIFY GO BOX TEXT)
 (VISUAL ?OBJECT LABEL GO)
 (MOTOR OCULAR PROCESSOR FREE))
 THEN
 ((DELDB (STEP VERIFY GO BOX TEXT))
 (ADDDB (STEP MOVE CURSOR TO GO BOX))
 (ADDDB (WM GO BOX IS ?OBJECT))))

;;

133

(MOVE-CURSOR-TO-GO-BOX
 IF
 ((GOAL DO MENU TASK)
 (STEP MOVE CURSOR TO GO BOX)
 (WM CURSOR IS ?CURSOR-OBJECT)
 (WM GO BOX IS ?TARGET-OBJECT)
 (MOTOR MANUAL PROCESSOR FREE)
)
 THEN
 ((SEND-TO-MOTOR MANUAL PERFORM POINT RIGHT ?CURSOR-OBJECT ?TARGET-OBJECT)
 (DELDB (STEP MOVE CURSOR TO GO BOX))
 (ADDDB (STEP MOVE GAZE TO TARGET PRECUE))))

;;
(MOVE-GAZE-TO-TARGET-PRECUE
;; After the precue has appeared with its onset, move the eyes to it.
;; But only move eyes to it if it is just above the GO-BOX.
IF
((GOAL DO MENU TASK)
 (STEP MOVE GAZE TO TARGET PRECUE)
 (WM GO BOX IS ?GO-BOX)
 (VISUAL ?OBJECT IS-ABOVE ?GO-BOX)
 (MOTOR OCULAR PROCESSOR FREE))
THEN
((DELDB (STEP MOVE GAZE TO TARGET PRECUE))
 (ADDDB (STEP GET TARGET PRECUE))
 (ADDDB (WM PRECUE IS ?OBJECT))
 (SEND-TO-MOTOR OCULAR MOVE ?OBJECT)))

;;
(GET-TARGET-PRECUE
;; Put the text of the precue object into WM as the target text.
IF
((GOAL DO MENU TASK)
 (STEP GET TARGET PRECUE)
 (WM PRECUE IS ?OBJECT)
 (VISUAL ?OBJECT LABEL ?PRECUE-TEXT))
THEN
((DELDB (STEP GET TARGET PRECUE))
 (ADDDB (STEP MOVE GAZE BACK TO GO BOX))
 (ADDDB (WM TARGET-TEXT IS ?PRECUE-TEXT))))

;;
(MOVE-GAZE-BACK-TO-GO-BOX
;; Move gaze back in preparation to start the trial.
IF
((GOAL DO MENU TASK)
 (STEP MOVE GAZE BACK TO GO BOX)
 (WM GO BOX IS ?OBJECT)
 (MOTOR OCULAR PROCESSOR FREE))
THEN
((DELDB (STEP MOVE GAZE BACK TO GO BOX))
 (ADDDB (STEP PREPARE EXACTLY CORRECT EYE MOVEMENT))
 (DELDB (WM GO BOX IS ?OBJECT))
 (SEND-TO-MOTOR OCULAR MOVE ?OBJECT)))

;;
(PREPARE-EXACTLY-CORRECT-EYE-MOVEMENT
;; Prepare the eye movement to the exactly correct location.
IF
((GOAL DO MENU TASK)
 (STEP PREPARE EXACTLY CORRECT EYE MOVEMENT)
 (MOTOR OCULAR PROCESSOR FREE))
THEN

134

((DELDB (STEP PREPARE EXACTLY CORRECT EYE MOVEMENT))
 (ADDDB (STEP GET SET))
 (SEND-TO-MOTOR OCULAR PREPARE TARGET-LOCATION-CORRECT)))

;;
(GET-SET
;; Make sure both processors are free.
IF
((GOAL DO MENU TASK)
 (STEP GET SET)
 (MOTOR OCULAR PROCESSOR FREE)
 (MOTOR MANUAL PROCESSOR FREE))
THEN
((DELDB (STEP GET SET))
 (ADDDB (STEP CLICK ON GO BOX))
 (ADDDB (STEP MOVE GAZE DIRECTLY TO TARGET))))

;;
;; THESE TWO RULES SHOULD MATCH EXCEPT FOR "PRESS/PUNCH" AND "MENU STYLE".
;;
(PRESS-MOUSE-BUTTON-TO-SHOW-MENU
IF
((STRATEGY MENU STYLE IS WALKING)
 (GOAL DO MENU TASK)
 (STEP CLICK ON GO BOX)
 (MOTOR MANUAL PROCESSOR FREE))
THEN
((SEND-TO-MOTOR MANUAL PERFORM PRESS MOUSE-BUTTON)
 (DELDB (STEP CLICK ON GO BOX))
 (ADDDB (STEP MOVE CURSOR TO TARGET))))
;;
(PUNCH-MOUSE-BUTTON-TO-SHOW-MENU
IF
((STRATEGY MENU STYLE IS CLICK-OPEN)
 (GOAL DO MENU TASK)
 (STEP CLICK ON GO BOX)
 (MOTOR MANUAL PROCESSOR FREE))
THEN
((SEND-TO-MOTOR MANUAL PERFORM PUNCH MOUSE-BUTTON)
 (DELDB (STEP CLICK ON GO BOX))
 (ADDDB (STEP MOVE CURSOR TO TARGET))))
;;

;;
(MOVE-GAZE-DIRECTLY-TO-TARGET
IF
((GOAL DO MENU TASK)
 (STEP MOVE GAZE DIRECTLY TO TARGET)
 (MOTOR OCULAR PROCESSOR FREE))
THEN
((DELDB (STEP MOVE GAZE DIRECTLY TO TARGET))
 (SEND-TO-MOTOR OCULAR MOVE TARGET-LOCATION-CORRECT)))

;;
(MOVE-CURSOR-DIRECTLY-TO-TARGET
IF
((GOAL DO MENU TASK)
 (STEP MOVE CURSOR TO TARGET)
 (WM CURSOR IS ?CURSOR-OBJECT)
 (MOTOR MANUAL PROCESSOR FREE))
THEN
((DELDB (STEP MOVE CURSOR TO TARGET))
 (ADDDB (STEP CLICK ON TARGET))
 (SEND-TO-MOTOR MANUAL PERFORM POINT RIGHT ?CURSOR-OBJECT TARGET-LOCATION-CORRECT)))

135

;;
;; THESE TWO RULES SHOULD MATCH EXCEPT FOR "RELEASE/PUNCH" AND "MENU STYLE".
;;
(RELEASE-MOUSE-BUTTON-ON-TARGET
IF
((STRATEGY MENU STYLE IS WALKING)
 (GOAL DO MENU TASK)
 (STEP CLICK ON TARGET)
 (MOTOR MANUAL PROCESSOR FREE))
THEN
((SEND-TO-MOTOR MANUAL PERFORM RELEASE MOUSE-BUTTON)
 (DELDB (STEP CLICK ON TARGET))
 (ADDDB (STEP WAIT FOR GO BOX))
 (ADDDB (STEP CLEANUP))))
;;
(PUNCH-MOUSE-BUTTON-ON-TARGET
IF
((STRATEGY MENU STYLE IS CLICK-OPEN)
 (GOAL DO MENU TASK)
 (STEP CLICK ON TARGET)
 (MOTOR MANUAL PROCESSOR FREE))
THEN
((SEND-TO-MOTOR MANUAL PERFORM PUNCH MOUSE-BUTTON)
 (DELDB (STEP CLICK ON TARGET))
 (ADDDB (STEP WAIT FOR GO BOX))
 (ADDDB (STEP CLEANUP))))
;;

;;
;these rules clean up whatever needs to be cleaned up after the response
(CLEANUP-STEP
IF
((GOAL DO MENU TASK)
 (STEP CLEANUP))
THEN
((DELDB (STEP CLEANUP))))

(CLEANUP-PRECUE
IF
((GOAL DO MENU TASK)
 (STEP CLEANUP)
 (WM PRECUE IS ?X))
THEN
((DELDB (WM PRECUE IS ?X))))

(CLEANUP-TARGET-TEXT
IF
((GOAL DO MENU TASK)
 (STEP CLEANUP)
 (WM TARGET-TEXT IS ?X))
THEN
((DELDB (WM TARGET-TEXT IS ?X))))

136

APPENDIX F

THE IMMEDIATE LOOK, POINT, AND CLICK STRATEGY
WITH SPECIAL CASE FOR POSITION 1

;;
;; NILSEN.1.3.24.PRS By Anthony Hornof
;; 9/9/98
;;

;;
(CHOICE-Start
IF
((GOAL DO MENU TASK)
 (NOT (WM MENU TASK UNDERWAY)))
THEN
((ADDDB (WM MENU TASK UNDERWAY))
 (SEND-TO-MOTOR OCULAR DISABLE REFLEX)
 (SEND-TO-MOTOR OCULAR DISABLE CENTERING)
 (SEND-TO-MOTOR MANUAL RESET MEMORY)
 (ADDDB (STEP IDENTIFY-CURSOR))))

;;
(START-CURSOR-TRACKING
IF
((GOAL DO MENU TASK)
 (STEP IDENTIFY-CURSOR)
 (VISUAL ?OBJECT SHAPE CROSS))
THEN
((DELDB (STEP IDENTIFY-CURSOR))
 (ADDDB (STEP WAIT FOR GO BOX))
 (ADDDB (WM CURSOR IS ?OBJECT))
 (DELDB (VISUAL ?OBJECT DETECTION ONSET))))

;;
(LOOK-AT-GO-BOX
 ;; Just looks at the visual object that appears next.
 IF
 ((GOAL DO MENU TASK)
 (STEP WAIT FOR GO BOX)
 (VISUAL ?OBJECT DETECTION ONSET)
 (VISUAL ?OBJECT IN-MENU NO) ;; so it does not look at a menu item
 (USE-ONLY-ONE ?OBJECT)
 (MOTOR OCULAR PROCESSOR FREE))
 THEN
 ((DELDB (STEP WAIT FOR GO BOX))
 (ADDDB (STEP VERIFY GO BOX TEXT))
 (SEND-TO-MOTOR OCULAR MOVE ?OBJECT)))

;;
(VERIFY-GO-BOX
 ;; Verify the new thing that appeared really is the GO box.
 IF
 ((GOAL DO MENU TASK)
 (STEP VERIFY GO BOX TEXT)
 (VISUAL ?OBJECT LABEL GO)
 (MOTOR OCULAR PROCESSOR FREE))
 THEN
 ((DELDB (STEP VERIFY GO BOX TEXT))
 (ADDDB (STEP MOVE CURSOR TO GO BOX))
 (ADDDB (WM GO BOX IS ?OBJECT))))

137

;;
(MOVE-CURSOR-TO-GO-BOX
 IF
 ((GOAL DO MENU TASK)
 (STEP MOVE CURSOR TO GO BOX)
 (WM CURSOR IS ?CURSOR-OBJECT)
 (WM GO BOX IS ?TARGET-OBJECT)
 (MOTOR MANUAL PROCESSOR FREE)
)
 THEN
 ((SEND-TO-MOTOR MANUAL PERFORM POINT RIGHT ?CURSOR-OBJECT ?TARGET-OBJECT)
 (DELDB (STEP MOVE CURSOR TO GO BOX))
 (ADDDB (STEP MOVE GAZE TO TARGET PRECUE))))

;;
(MOVE-GAZE-TO-TARGET-PRECUE
;; After the precue has appeared with its onset, move the eyes to it.
;; But only move eyes to it if it is just above the GO-BOX.
IF
((GOAL DO MENU TASK)
 (STEP MOVE GAZE TO TARGET PRECUE)
 (WM GO BOX IS ?GO-BOX)
 (VISUAL ?OBJECT IS-ABOVE ?GO-BOX)
 (MOTOR OCULAR PROCESSOR FREE))
THEN
((DELDB (STEP MOVE GAZE TO TARGET PRECUE))
 (ADDDB (STEP GET TARGET PRECUE))
 (ADDDB (WM PRECUE IS ?OBJECT))
 (SEND-TO-MOTOR OCULAR MOVE ?OBJECT)))

;;
(GET-TARGET-PRECUE
;; Put the text of the precue object into WM as the target text.
IF
((GOAL DO MENU TASK)
 (STEP GET TARGET PRECUE)
 (WM PRECUE IS ?OBJECT)
 (VISUAL ?OBJECT LABEL ?PRECUE-TEXT))
THEN
((DELDB (STEP GET TARGET PRECUE))
 (ADDDB (STEP MOVE GAZE BACK TO GO BOX))
 (ADDDB (WM TARGET-TEXT IS ?PRECUE-TEXT))))

;;
(MOVE-GAZE-BACK-TO-GO-BOX
;; Move gaze back in preparation to start the trial.
IF
((GOAL DO MENU TASK)
 (STEP MOVE GAZE BACK TO GO BOX)
 (WM GO BOX IS ?OBJECT)
 (MOTOR OCULAR PROCESSOR FREE))
THEN
((DELDB (STEP MOVE GAZE BACK TO GO BOX))
 (ADDDB (STEP DECIDE IF SPECIAL CASE))
 (DELDB (WM GO BOX IS ?OBJECT))
 (SEND-TO-MOTOR OCULAR MOVE ?OBJECT)))

;;
(DECIDE-YES-SPECIAL-CASE
IF
((GOAL DO MENU TASK)
 (STEP DECIDE IF SPECIAL CASE)
 (WM TARGET-TEXT IS 1))
THEN

138

((DELDB (STEP DECIDE IF SPECIAL CASE))
 (ADDDB (STEP CLICK ON GO BOX - SPECIAL CASE))))

;;
(DECIDE-NO-SPECIAL-CASE
IF
((GOAL DO MENU TASK)
 (STEP DECIDE IF SPECIAL CASE)
 (NOT (WM TARGET-TEXT IS 1)))
THEN
((DELDB (STEP DECIDE IF SPECIAL CASE))
 (ADDDB (STEP PREPARE EXACTLY CORRECT EYE MOVEMENT))))

;;
;; RULES FOR *YES* SPECIAL CASE - TARGET POSITION 1.
;;

;;
;; THESE TWO RULES SHOULD MATCH EXCEPT FOR "PRESS/PUNCH" AND "MENU STYLE".
;;
(PUNCH-MOUSE-BUTTON-TO-SHOW-MENU--TARGET-IS-FIRST-MENU-ITEM
IF
((GOAL DO MENU TASK)
 (STRATEGY MENU STYLE IS CLICK-OPEN)
 (STEP CLICK ON GO BOX - SPECIAL CASE)
 (MOTOR MANUAL PROCESSOR FREE))
THEN
((DELDB (STEP CLICK ON GO BOX - SPECIAL CASE))
 (ADDDB (STEP PREPARE TO CLICK ON TARGET - SPECIAL CASE))
 (SEND-TO-MOTOR MANUAL PERFORM PUNCH MOUSE-BUTTON)))
;;
(PRESS-MOUSE-BUTTON-TO-SHOW-MENU--TARGET-IS-FIRST-MENU-ITEM
IF
((GOAL DO MENU TASK)
 (STRATEGY MENU STYLE IS WALKING)
 (STEP CLICK ON GO BOX - SPECIAL CASE)
 (MOTOR MANUAL PROCESSOR FREE))
THEN
((DELDB (STEP CLICK ON GO BOX - SPECIAL CASE))
 (ADDDB (STEP PREPARE TO CLICK ON TARGET - SPECIAL CASE))
 (SEND-TO-MOTOR MANUAL PERFORM PRESS MOUSE-BUTTON)))
;;

;;
;; THESE TWO RULES SHOULD MATCH EXCEPT FOR "PRESS/PUNCH" AND "MENU STYLE".
;;

(PREPARE-TO-PUNCH-MOUSE-BUTTON-ON-FIRST-MENU-ITEM
IF
((GOAL DO MENU TASK)
 (STRATEGY MENU STYLE IS CLICK-OPEN)
 (STEP PREPARE TO CLICK ON TARGET - SPECIAL CASE)
 (MOTOR MANUAL PROCESSOR FREE))
THEN
((DELDB (STEP PREPARE TO CLICK ON TARGET - SPECIAL CASE))
 (ADDDB (STEP CLICK ON TARGET - SPECIAL CASE))
 (SEND-TO-MOTOR MANUAL PREPARE PUNCH MOUSE-BUTTON)))
;;
(PREPARE-TO-RELEASE-MOUSE-BUTTON-ON-FIRST-MENU-ITEM
IF
((GOAL DO MENU TASK)
 (STRATEGY MENU STYLE IS WALKING)
 (STEP PREPARE TO CLICK ON TARGET - SPECIAL CASE)
 (MOTOR MANUAL PROCESSOR FREE))

139

THEN
((DELDB (STEP PREPARE TO CLICK ON TARGET - SPECIAL CASE))
 (ADDDB (STEP CLICK ON TARGET - SPECIAL CASE))
 (SEND-TO-MOTOR MANUAL PREPARE RELEASE MOUSE-BUTTON)))
;;

;;
;; THESE TWO RULES SHOULD MATCH EXCEPT FOR "PRESS/PUNCH" AND "MENU STYLE".
;;

(PUNCH-MOUSE-BUTTON-ON-FIRST-MENU-ITEM
IF
((GOAL DO MENU TASK)
 (STRATEGY MENU STYLE IS CLICK-OPEN)
 (STEP CLICK ON TARGET - SPECIAL CASE)
 (VISUAL ?OBJECT IN-MENU YES)
 (VISUAL ?OBJECT LABEL 1)
 (MOTOR MANUAL PROCESSOR FREE))
THEN
((DELDB (STEP CLICK ON TARGET - SPECIAL CASE))
 (ADDDB (STEP WAIT FOR GO BOX))
 (ADDDB (STEP CLEANUP))
 (SEND-TO-MOTOR MANUAL PERFORM PUNCH MOUSE-BUTTON)))
;;
(RELEASE-MOUSE-BUTTON-ON-FIRST-MENU-ITEM
IF
((GOAL DO MENU TASK)
 (STRATEGY MENU STYLE IS WALKING)
 (STEP CLICK ON TARGET - SPECIAL CASE)
 (VISUAL ?OBJECT IN-MENU YES)
 (VISUAL ?OBJECT LABEL 1)
 (MOTOR MANUAL PROCESSOR FREE))
THEN
((DELDB (STEP CLICK ON TARGET - SPECIAL CASE))
 (ADDDB (STEP WAIT FOR GO BOX))
 (ADDDB (STEP CLEANUP))
 (SEND-TO-MOTOR MANUAL PERFORM RELEASE MOUSE-BUTTON)))
;;

;;
;; RULES FOR *NO* SPECIAL CASE - TARGET POSITIONS 2 THROUGH 9.
;;

;;
(PREPARE-EXACTLY-CORRECT-EYE-MOVEMENT
;; Prepare the eye movement to the exactly correct location.
IF
((GOAL DO MENU TASK)
 (STEP PREPARE EXACTLY CORRECT EYE MOVEMENT)
 (MOTOR OCULAR PROCESSOR FREE))
THEN
((DELDB (STEP PREPARE EXACTLY CORRECT EYE MOVEMENT))
 (ADDDB (STEP GET SET))
 (SEND-TO-MOTOR OCULAR PREPARE TARGET-LOCATION-CORRECT)))

;;
(GET-SET
;; Make sure both processors are free.
IF
((GOAL DO MENU TASK)
 (STEP GET SET)
 (MOTOR OCULAR PROCESSOR FREE)
 (MOTOR MANUAL PROCESSOR FREE))
THEN

140

((DELDB (STEP GET SET))
 (ADDDB (STEP CLICK ON GO BOX))
 (ADDDB (STEP MOVE GAZE DIRECTLY TO TARGET))))

;;
;; THESE TWO RULES SHOULD MATCH EXCEPT FOR "PRESS/PUNCH" AND "MENU STYLE".
;;
(PRESS-MOUSE-BUTTON-TO-SHOW-MENU
IF
((STRATEGY MENU STYLE IS WALKING)
 (GOAL DO MENU TASK)
 (STEP CLICK ON GO BOX)
 (MOTOR MANUAL PROCESSOR FREE))
THEN
((SEND-TO-MOTOR MANUAL PERFORM PRESS MOUSE-BUTTON)
 (DELDB (STEP CLICK ON GO BOX))
 (ADDDB (STEP MOVE CURSOR TO TARGET))))
;;
(PUNCH-MOUSE-BUTTON-TO-SHOW-MENU
IF
((STRATEGY MENU STYLE IS CLICK-OPEN)
 (GOAL DO MENU TASK)
 (STEP CLICK ON GO BOX)
 (MOTOR MANUAL PROCESSOR FREE))
THEN
((SEND-TO-MOTOR MANUAL PERFORM PUNCH MOUSE-BUTTON)
 (DELDB (STEP CLICK ON GO BOX))
 (ADDDB (STEP MOVE CURSOR TO TARGET))))
;;

;;
(MOVE-GAZE-DIRECTLY-TO-TARGET
IF
((GOAL DO MENU TASK)
 (STEP MOVE GAZE DIRECTLY TO TARGET)
 (MOTOR OCULAR PROCESSOR FREE))
THEN
((DELDB (STEP MOVE GAZE DIRECTLY TO TARGET))
 (SEND-TO-MOTOR OCULAR MOVE TARGET-LOCATION-CORRECT)))

;;
(MOVE-CURSOR-DIRECTLY-TO-TARGET
IF
((GOAL DO MENU TASK)
 (STEP MOVE CURSOR TO TARGET)
 (WM CURSOR IS ?CURSOR-OBJECT)
 (MOTOR MANUAL PROCESSOR FREE))
THEN
((DELDB (STEP MOVE CURSOR TO TARGET))
 (ADDDB (STEP CLICK ON TARGET))
 (SEND-TO-MOTOR MANUAL PERFORM POINT RIGHT ?CURSOR-OBJECT TARGET-LOCATION-CORRECT)))

;;
;; THESE TWO RULES SHOULD MATCH EXCEPT FOR "RELEASE/PUNCH" AND "MENU STYLE".
;;
(RELEASE-MOUSE-BUTTON-ON-TARGET
IF
((STRATEGY MENU STYLE IS WALKING)
 (GOAL DO MENU TASK)
 (STEP CLICK ON TARGET)
 (MOTOR MANUAL PROCESSOR FREE))
THEN
((SEND-TO-MOTOR MANUAL PERFORM RELEASE MOUSE-BUTTON)
 (DELDB (STEP CLICK ON TARGET))

141

 (ADDDB (STEP WAIT FOR GO BOX))
 (ADDDB (STEP CLEANUP))))
;;
(PUNCH-MOUSE-BUTTON-ON-TARGET
IF
((STRATEGY MENU STYLE IS CLICK-OPEN)
 (GOAL DO MENU TASK)
 (STEP CLICK ON TARGET)
 (MOTOR MANUAL PROCESSOR FREE))
THEN
((SEND-TO-MOTOR MANUAL PERFORM PUNCH MOUSE-BUTTON)
 (DELDB (STEP CLICK ON TARGET))
 (ADDDB (STEP WAIT FOR GO BOX))
 (ADDDB (STEP CLEANUP))))
;;

;;
;these rules clean up whatever needs to be cleaned up after the response
(CLEANUP-STEP
IF
((GOAL DO MENU TASK)
 (STEP CLEANUP))
THEN
((DELDB (STEP CLEANUP))))

(CLEANUP-PRECUE
IF
((GOAL DO MENU TASK)
 (STEP CLEANUP)
 (WM PRECUE IS ?X))
THEN
((DELDB (WM PRECUE IS ?X))))

(CLEANUP-TARGET-TEXT
IF
((GOAL DO MENU TASK)
 (STEP CLEANUP)
 (WM TARGET-TEXT IS ?X))
THEN
((DELDB (WM TARGET-TEXT IS ?X))))

142

APPENDIX G

THE IMMEDIATE LOOK, POINT, CHECK AND CORRECT STRATEGY
WITH SPECIAL CASE FOR POSITION 1

;;
;; NILSEN.1.3.34.PRS By Anthony Hornof
;; 9/1/98
;;

;;
(CHOICE-Start
IF
((GOAL DO MENU TASK)
 (NOT (WM MENU TASK UNDERWAY)))
THEN
((ADDDB (WM MENU TASK UNDERWAY))
 (SEND-TO-MOTOR OCULAR DISABLE REFLEX)
 (SEND-TO-MOTOR OCULAR DISABLE CENTERING)
 (SEND-TO-MOTOR MANUAL RESET MEMORY)
 (ADDDB (STEP IDENTIFY-CURSOR))))

;;
(START-CURSOR-TRACKING
IF
((GOAL DO MENU TASK)
 (STEP IDENTIFY-CURSOR)
 (VISUAL ?OBJECT SHAPE CROSS))
THEN
((DELDB (STEP IDENTIFY-CURSOR))
 (ADDDB (STEP WAIT FOR GO BOX))
 (ADDDB (WM CURSOR IS ?OBJECT))))

;;
(LOOK-AT-GO-BOX
 ;; Just looks at the visual object that appears next.
 IF
 ((GOAL DO MENU TASK)
 (STEP WAIT FOR GO BOX)
 (VISUAL ?OBJECT DETECTION ONSET)
 (VISUAL ?OBJECT IN-MENU NO) ;; so it does not look at a previous menu item
 (USE-ONLY-ONE ?OBJECT) ;; If cursor is in GO box, the precue is already there.
 (MOTOR OCULAR PROCESSOR FREE))
 THEN
 ((DELDB (STEP WAIT FOR GO BOX))
 (ADDDB (STEP VERIFY GO BOX TEXT))
 (SEND-TO-MOTOR OCULAR MOVE ?OBJECT)))

;;
(VERIFY-GO-BOX
 ;; Verify the new thing that appeared really is the GO box.
 IF
 ((GOAL DO MENU TASK)
 (STEP VERIFY GO BOX TEXT)
 (VISUAL ?OBJECT LABEL GO)
 (MOTOR OCULAR PROCESSOR FREE))
 THEN
 ((DELDB (STEP VERIFY GO BOX TEXT))
 (ADDDB (STEP MOVE CURSOR TO GO BOX))
 (ADDDB (WM GO BOX IS ?OBJECT))
 (SEND-TO-MOTOR OCULAR MOVE ?OBJECT)))

143

;;
(MOVE-CURSOR-TO-GO-BOX
 IF
 ((GOAL DO MENU TASK)
 (STEP MOVE CURSOR TO GO BOX)
 (WM CURSOR IS ?CURSOR-OBJECT)
 (WM GO BOX IS ?TARGET-OBJECT)
 (MOTOR MANUAL PROCESSOR FREE)
)
 THEN
 ((SEND-TO-MOTOR MANUAL PERFORM POINT RIGHT ?CURSOR-OBJECT ?TARGET-OBJECT)
 (DELDB (STEP MOVE CURSOR TO GO BOX))
 (ADDDB (STEP MOVE GAZE TO TARGET PRECUE))))

;;
(MOVE-GAZE-TO-TARGET-PRECUE
;; After the precue has appeared with its onset, move the eyes to it.
;; But only move eyes to it if it is just above the GO-BOX.
IF
((GOAL DO MENU TASK)
 (STEP MOVE GAZE TO TARGET PRECUE)
 (WM GO BOX IS ?GO-BOX)
 (VISUAL ?OBJECT IS-ABOVE ?GO-BOX)
 (MOTOR OCULAR PROCESSOR FREE))
THEN
((DELDB (STEP MOVE GAZE TO TARGET PRECUE))
 (ADDDB (STEP GET TARGET PRECUE))
 (ADDDB (WM PRECUE IS ?OBJECT))
 (SEND-TO-MOTOR OCULAR MOVE ?OBJECT)))

;;
(GET-TARGET-PRECUE
;; Put the text of the precue object into WM as the target text.
IF
((GOAL DO MENU TASK)
 (STEP GET TARGET PRECUE)
 (WM PRECUE IS ?OBJECT)
 (VISUAL ?OBJECT LABEL ?PRECUE-TEXT))
THEN
((DELDB (STEP GET TARGET PRECUE))
 (ADDDB (STEP MOVE GAZE BACK TO GO BOX))
 (ADDDB (WM TARGET-TEXT IS ?PRECUE-TEXT))))

;;
(MOVE-GAZE-BACK-TO-GO-BOX
;; Move gaze back in preparation to start the trial.
IF
((GOAL DO MENU TASK)
 (STEP MOVE GAZE BACK TO GO BOX)
 (WM GO BOX IS ?OBJECT)
 (MOTOR OCULAR PROCESSOR FREE))
THEN
((DELDB (STEP MOVE GAZE BACK TO GO BOX))
 (ADDDB (STEP DECIDE IF SPECIAL CASE))
 (DELDB (WM GO BOX IS ?OBJECT))
 (SEND-TO-MOTOR OCULAR MOVE ?OBJECT)))

;;
(DECIDE-YES-THIS-IS-A-SPECIAL-CASE
IF
((GOAL DO MENU TASK)
 (STEP DECIDE IF SPECIAL CASE)
 (WM TARGET-TEXT IS 1))
THEN

144

((DELDB (STEP DECIDE IF SPECIAL CASE))
 (ADDDB (STEP CLICK ON GO BOX - SPECIAL CASE))))

;;
(DECIDE-NO-THIS-IS-NOT-A-SPECIAL-CASE
IF
((GOAL DO MENU TASK)
 (STEP DECIDE IF SPECIAL CASE)
 (NOT (WM TARGET-TEXT IS 1)))
THEN
((DELDB (STEP DECIDE IF SPECIAL CASE))
 (ADDDB (STEP PREPARE EYE MOVEMENT TO LOCATION WITH ERROR))))

;;
;; RULES FOR *YES* SPECIAL CASE - TARGET POSITION 1.
;;

;;
;; THESE TWO RULES SHOULD MATCH EXCEPT FOR "PRESS/PUNCH" AND "MENU STYLE".
;;
(PUNCH-MOUSE-BUTTON-TO-SHOW-MENU--TARGET-IS-FIRST-MENU-ITEM
IF
((GOAL DO MENU TASK)
 (STRATEGY MENU STYLE IS CLICK-OPEN)
 (STEP CLICK ON GO BOX - SPECIAL CASE)
 (MOTOR MANUAL PROCESSOR FREE))
THEN
((DELDB (STEP CLICK ON GO BOX - SPECIAL CASE))
 (ADDDB (STEP PREPARE TO CLICK ON TARGET - SPECIAL CASE))
 (SEND-TO-MOTOR MANUAL PERFORM PUNCH MOUSE-BUTTON)))
;;
(PRESS-MOUSE-BUTTON-TO-SHOW-MENU--TARGET-IS-FIRST-MENU-ITEM
IF
((GOAL DO MENU TASK)
 (STRATEGY MENU STYLE IS WALKING)
 (STEP CLICK ON GO BOX - SPECIAL CASE)
 (MOTOR MANUAL PROCESSOR FREE))
THEN
((DELDB (STEP CLICK ON GO BOX - SPECIAL CASE))
 (ADDDB (STEP PREPARE TO CLICK ON TARGET - SPECIAL CASE))
 (SEND-TO-MOTOR MANUAL PERFORM PRESS MOUSE-BUTTON)))
;;

;;
;; THESE TWO RULES SHOULD MATCH EXCEPT FOR "PRESS/PUNCH" AND "MENU STYLE".
;;
(PREPARE-TO-PUNCH-MOUSE-BUTTON-ON-FIRST-MENU-ITEM
IF
((GOAL DO MENU TASK)
 (STRATEGY MENU STYLE IS CLICK-OPEN)
 (STEP PREPARE TO CLICK ON TARGET - SPECIAL CASE)
 (MOTOR MANUAL PROCESSOR FREE))
THEN
((DELDB (STEP PREPARE TO CLICK ON TARGET - SPECIAL CASE))
 (ADDDB (STEP CLICK ON TARGET - SPECIAL CASE))
 (SEND-TO-MOTOR MANUAL PREPARE PUNCH MOUSE-BUTTON)))
;;
(PREPARE-TO-RELEASE-MOUSE-BUTTON-ON-FIRST-MENU-ITEM
IF
((GOAL DO MENU TASK)
 (STRATEGY MENU STYLE IS WALKING)
 (STEP PREPARE TO CLICK ON TARGET - SPECIAL CASE)
 (MOTOR MANUAL PROCESSOR FREE))
THEN

145

((DELDB (STEP PREPARE TO CLICK ON TARGET - SPECIAL CASE))
 (ADDDB (STEP CLICK ON TARGET - SPECIAL CASE))
 (SEND-TO-MOTOR MANUAL PREPARE RELEASE MOUSE-BUTTON)))
;;

;;
;; THESE TWO RULES SHOULD MATCH EXCEPT FOR "PRESS/PUNCH" AND "MENU STYLE".
;;
(PUNCH-MOUSE-BUTTON-ON-FIRST-MENU-ITEM
IF
((GOAL DO MENU TASK)
 (STRATEGY MENU STYLE IS CLICK-OPEN)
 (STEP CLICK ON TARGET - SPECIAL CASE)
 (VISUAL ?OBJECT IN-MENU YES)
 (VISUAL ?OBJECT LABEL 1)
 (MOTOR MANUAL PROCESSOR FREE))
THEN
((DELDB (STEP CLICK ON TARGET - SPECIAL CASE))
 (ADDDB (STEP WAIT FOR GO BOX))
 (ADDDB (STEP CLEANUP))
 (SEND-TO-MOTOR MANUAL PERFORM PUNCH MOUSE-BUTTON)))
;;
(RELEASE-MOUSE-BUTTON-ON-FIRST-MENU-ITEM
IF
((GOAL DO MENU TASK)
 (STRATEGY MENU STYLE IS WALKING)
 (STEP CLICK ON TARGET - SPECIAL CASE)
 (VISUAL ?OBJECT IN-MENU YES)
 (VISUAL ?OBJECT LABEL 1)
 (MOTOR MANUAL PROCESSOR FREE))
THEN
((DELDB (STEP CLICK ON TARGET - SPECIAL CASE))
 (ADDDB (STEP WAIT FOR GO BOX))
 (ADDDB (STEP CLEANUP))
 (SEND-TO-MOTOR MANUAL PERFORM RELEASE MOUSE-BUTTON)))
;;

;;
;; RULES FOR *NO* SPECIAL CASE - TARGET POSITIONS 2 THROUGH 9.
;;

;;
(PREPARE-EYE-MOVEMENT-TO-LOCATION-WITH-ERROR
IF
((GOAL DO MENU TASK)
 (STEP PREPARE EYE MOVEMENT TO LOCATION WITH ERROR)
 (MOTOR OCULAR PROCESSOR FREE))
THEN
((DELDB (STEP PREPARE EYE MOVEMENT TO LOCATION WITH ERROR))
 (ADDDB (STEP GET SET))
 (SEND-TO-MOTOR OCULAR PREPARE TARGET-LOCATION-WITH-ERROR)))

;;
(GET-SET
;; Make sure both processors are free. Note that TWO steps are added here.
IF
((GOAL DO MENU TASK)
 (STEP GET SET)
 (MOTOR OCULAR PROCESSOR FREE)
 (MOTOR MANUAL PROCESSOR FREE))
THEN
((DELDB (STEP GET SET))
 (ADDDB (STEP CLICK ON GO BOX))
 (ADDDB (STEP MOVE GAZE TO LOCATION WITH ERROR))))

146

;;
;; THESE TWO RULES SHOULD MATCH EXCEPT FOR "PRESS/PUNCH" AND "MENU STYLE".
;;
(PRESS-MOUSE-BUTTON-TO-SHOW-MENU
IF
((STRATEGY MENU STYLE IS WALKING)
 (GOAL DO MENU TASK)
 (STEP CLICK ON GO BOX)
 (MOTOR MANUAL PROCESSOR FREE))
THEN
((DELDB (STEP CLICK ON GO BOX))
 (ADDDB (STEP ATTEMPT TO POINT TO TARGET))
 (SEND-TO-MOTOR MANUAL PERFORM PRESS MOUSE-BUTTON)))
;;
(PUNCH-MOUSE-BUTTON-TO-SHOW-MENU
IF
((STRATEGY MENU STYLE IS CLICK-OPEN)
 (GOAL DO MENU TASK)
 (STEP CLICK ON GO BOX)
 (MOTOR MANUAL PROCESSOR FREE))
THEN
((DELDB (STEP CLICK ON GO BOX))
 (ADDDB (STEP ATTEMPT TO POINT TO TARGET))
 (SEND-TO-MOTOR MANUAL PERFORM PUNCH MOUSE-BUTTON)))
;;

;;
(MOVE-GAZE-TO-LOCATION-WITH-ERROR
IF
((GOAL DO MENU TASK)
 (STEP MOVE GAZE TO LOCATION WITH ERROR)
 (MOTOR OCULAR PROCESSOR FREE))
THEN
((DELDB (STEP MOVE GAZE TO LOCATION WITH ERROR))
 (SEND-TO-MOTOR OCULAR MOVE TARGET-LOCATION-WITH-ERROR)))

;;
(POINT-TO-TARGET-LOCATION-WITH-ERROR
;; Note that TWO steps are added here.
IF
((GOAL DO MENU TASK)
 (STEP ATTEMPT TO POINT TO TARGET)
 (WM CURSOR IS ?CURSOR-OBJECT)
 (MOTOR MANUAL PROCESSOR FREE))
THEN
((DELDB (STEP ATTEMPT TO POINT TO TARGET))
 (ADDDB (STEP PREPARE RELEASE OR PUNCH))
 (ADDDB (STEP FIGURE OUT WHERE FIRST POINT LANDED AND WHAT TO DO NEXT))
 (SEND-TO-MOTOR MANUAL PERFORM POINT RIGHT ?CURSOR-OBJECT TARGET-LOCATION-WITH-
ERROR)))

;;
;; THESE TWO RULES SHOULD MATCH EXCEPT FOR "RELEASE/PUNCH" AND "MENU STYLE".
;;
(PREPARE-TO-RELEASE-MOUSE-BUTTON-ON-TARGET
IF
((STRATEGY MENU STYLE IS WALKING)
 (GOAL DO MENU TASK)
 (STEP PREPARE RELEASE OR PUNCH)
 (MOTOR MANUAL PROCESSOR FREE))
THEN
((SEND-TO-MOTOR MANUAL PREPARE RELEASE MOUSE-BUTTON)
 (DELDB (STEP PREPARE RELEASE OR PUNCH))))

147

;;
(PREPARE-TO-PUNCH-MOUSE-BUTTON-ON-TARGET
IF
((STRATEGY MENU STYLE IS CLICK-OPEN)
 (GOAL DO MENU TASK)
 (STEP PREPARE RELEASE OR PUNCH)
 (MOTOR MANUAL PROCESSOR FREE))
THEN
((SEND-TO-MOTOR MANUAL PREPARE PUNCH MOUSE-BUTTON)
 (DELDB (STEP PREPARE RELEASE OR PUNCH))))
;;

;;
(FIRST-POINT-MISSES-MENU-ENTIRELY-SO-MAKE-A-SECOND-SACCADE-AND-POINT
IF
((GOAL DO MENU TASK)
 (STEP FIGURE OUT WHERE FIRST POINT LANDED AND WHAT TO DO NEXT)
 (WM CURSOR IS ?CURSOR-OBJECT)
 (VISUAL ?CURSOR-OBJECT POINTS-TO NOTHING)
 (MOTOR OCULAR PROCESSOR FREE)
 (MOTOR MANUAL PROCESSOR FREE))
THEN
((DELDB (STEP FIGURE OUT WHERE FIRST POINT LANDED AND WHAT TO DO NEXT))
 (ADDDB (STEP CLICK ON TARGET AFTER SECOND POINT))
 (SEND-TO-MOTOR OCULAR MOVE TARGET-LOCATION-CORRECT)
 (SEND-TO-MOTOR MANUAL PERFORM POINT RIGHT ?CURSOR-OBJECT TARGET-LOCATION-CORRECT)))

;;
(FIRST-POINT-MISSES-TARGET-SO-MAKE-A-SECOND-SACCADE-AND-POINT
IF
((GOAL DO MENU TASK)
 (STEP FIGURE OUT WHERE FIRST POINT LANDED AND WHAT TO DO NEXT)
 (WM TARGET-TEXT IS ?TEXT)
 (WM CURSOR IS ?CURSOR-OBJECT)
 (VISUAL ?CURSOR-OBJECT POINTS-TO ?SOMETHING)
 (VISUAL ?SOMETHING LABEL ?OTHER-TEXT)
 (DIFFERENT ?TEXT ?OTHER-TEXT)
 (MOTOR OCULAR PROCESSOR FREE)
 (MOTOR MANUAL PROCESSOR FREE))
THEN
((DELDB (STEP FIGURE OUT WHERE FIRST POINT LANDED AND WHAT TO DO NEXT))
 (ADDDB (STEP CLICK ON TARGET AFTER SECOND POINT))
 (SEND-TO-MOTOR OCULAR MOVE TARGET-LOCATION-CORRECT)
 (SEND-TO-MOTOR MANUAL PERFORM POINT RIGHT ?CURSOR-OBJECT TARGET-LOCATION-CORRECT)))

;;
;; THESE TWO RULES SHOULD MATCH EXCEPT FOR "RELEASE/PUNCH" AND "MENU STYLE".
;;
(FIRST-POINT-LANDS-ON-TARGET-SO-RELEASE-MOUSE-BUTTON
IF
((STRATEGY MENU STYLE IS WALKING)
 (GOAL DO MENU TASK)
 (STEP FIGURE OUT WHERE FIRST POINT LANDED AND WHAT TO DO NEXT)
 (VISUAL ?TARGET-OBJECT LABEL ?TEXT)
 (VISUAL ?CURSOR-OBJECT POINTS-TO ?TARGET-OBJECT)
 (WM TARGET-TEXT IS ?TEXT)
 (WM CURSOR IS ?CURSOR-OBJECT)
 (MOTOR MANUAL PROCESSOR FREE))
THEN
((SEND-TO-MOTOR MANUAL PERFORM RELEASE MOUSE-BUTTON)
 (DELDB (STEP FIGURE OUT WHERE FIRST POINT LANDED AND WHAT TO DO NEXT))
 (ADDDB (STEP WAIT FOR GO BOX))
 (ADDDB (STEP CLEANUP))))
;;

148

(FIRST-POINT-LANDS-ON-TARGET-SO-PUNCH-MOUSE-BUTTON
IF
((STRATEGY MENU STYLE IS CLICK-OPEN)
 (GOAL DO MENU TASK)
 (STEP FIGURE OUT WHERE FIRST POINT LANDED AND WHAT TO DO NEXT)
 (VISUAL ?TARGET-OBJECT LABEL ?TEXT)
 (VISUAL ?CURSOR-OBJECT POINTS-TO ?TARGET-OBJECT)
 (WM TARGET-TEXT IS ?TEXT)
 (WM CURSOR IS ?CURSOR-OBJECT)
 (MOTOR MANUAL PROCESSOR FREE))
THEN
((SEND-TO-MOTOR MANUAL PERFORM PUNCH MOUSE-BUTTON)
 (DELDB (STEP FIGURE OUT WHERE FIRST POINT LANDED AND WHAT TO DO NEXT))
 (ADDDB (STEP WAIT FOR GO BOX))
 (ADDDB (STEP CLEANUP))))
;;

;;
;; THESE TWO RULES SHOULD MATCH EXCEPT FOR "RELEASE/PUNCH" AND "MENU STYLE".
;;
(SECOND-POINT-LANDS-ON-TARGET-SO-RELEASE-MOUSE-BUTTON
IF
((STRATEGY MENU STYLE IS WALKING)
 (GOAL DO MENU TASK)
 (STEP CLICK ON TARGET AFTER SECOND POINT)
 (MOTOR MANUAL PROCESSOR FREE))
THEN
((SEND-TO-MOTOR MANUAL PERFORM RELEASE MOUSE-BUTTON)
 (DELDB (STEP CLICK ON TARGET AFTER SECOND POINT))
 (ADDDB (STEP WAIT FOR GO BOX))
 (ADDDB (STEP CLEANUP))))
;;
(SECOND-POINT-LANDS-ON-TARGET-SO-PUNCH-MOUSE-BUTTON
IF
((STRATEGY MENU STYLE IS CLICK-OPEN)
 (GOAL DO MENU TASK)
 (STEP CLICK ON TARGET AFTER SECOND POINT)
 (MOTOR MANUAL PROCESSOR FREE))
THEN
((SEND-TO-MOTOR MANUAL PERFORM PUNCH MOUSE-BUTTON)
 (DELDB (STEP CLICK ON TARGET AFTER SECOND POINT))
 (ADDDB (STEP WAIT FOR GO BOX))
 (ADDDB (STEP CLEANUP))))
;;

;;
;These rules clean up whatever needs to be cleaned up after the response
(CLEANUP-STEP
IF
((GOAL DO MENU TASK)
 (STEP CLEANUP))
THEN
((DELDB (STEP CLEANUP))))

(CLEANUP-PRECUE
IF
((GOAL DO MENU TASK)
 (STEP CLEANUP)
 (WM PRECUE IS ?X))
THEN
((DELDB (WM PRECUE IS ?X))))

(CLEANUP-TARGET-TEXT
IF

149

((GOAL DO MENU TASK)
 (STEP CLEANUP)
 (WM TARGET-TEXT IS ?X))
THEN
((DELDB (WM TARGET-TEXT IS ?X))))

BIBLIOGRAPHY

150

151

BIBLIOGRAPHY

Aaltonen, A., Hyrskykari, A., & Räihä, K.-J. (1998). 101 spots, or how do users read
menus? Proceedings of CHI 98, New York: ACM, 132-139.

Abrams, R. A., Meyer, D. E., & Kornblum, S. (1989). Speed and accuracy of saccadic
eye movements: Characteristics of impulse variability in the oculomotor system.
Journal of Experimental Psychology: Human Perception and Performance,
15(3), 529-543.

Anderson, J. R. (1993). Rules of the mind. Hillsdale, NJ: Erlbaum.

Anderson, J. R., & Lebiere, C. (Eds.). (1998). The Atomic Components of Thought.
Mahwah, NJ: Erlbaum.

Anderson, J. R., Matessa, M., & Lebiere, C. (1997). ACT-R: A theory of higher level
cognition and its relation to visual attention. Human-Computer Interaction, 12(4),
439-462.

Antes, J. R. (1974). The time course of picture viewing. Journal of Experimental
Psychology, 103(1), 62-70.

Apple Computer. (1993). Macintosh Human Interface Guidelines. Reading,
Massachusetts: Addison-Wesley Publishing Company, Inc.

Arani, T., Karwan, M. H., & Drury, C. G. (1984). A variable-memory model of visual
search. Human Factors, 26(6), 631-639.

Arend, U., Muthig, K. P., & Wandmacher, J. (1987). Evidence for global feature
superiority in menu selection by icons. Behaviour and Information Technology,
6(4), 411-426.

Backs, R. W., Walrath, L. C., & Hancock, G. A. (1987). Comparison of Horizontal and
Vertical Menu Formats. Proceedings of the Human Factors Society 31st Annual
Meeting, Santa Monica, CA: Human Factors Society, 715-717.

Battig, W. F., & Montague, W. E. (1969). Category Norms for Verbal Items in 56
Categories. Journal of Experimental Psychology Monographs, 80(3).

Bednall, E. S. (1992). The effect of screen format on visual list search. Ergonomics, 35,
369-383.

Biederman, I. (1972). Perceiving real-world scenes. Science, 177, 77-79.

Biederman, I., Glass, A. L., & Stacey, E. W., Jr. (1973). Searching for objects in real-
world scenes. Journal of Experimental Psychology, 97, 22-27.

Bloomfield, J. (1972). Visual search in complex fields: Size differences between target disc
and surrounding discs. Human Factors, 14, 139-148.

152

Boff, K. R., & Lincoln, J. E. (1988). Visual Search, Engineering Data Compendium:
Human Perception and Performance.: AAMRL, Wright-Patterson AFB, OH,
1549-1602.

Bovair, S., Kieras, D. E., & Polson, P. G. (1990). The acquisition and performance of
text editing skill: A cognitive complexity analysis. Human-Computer Interaction,
5, 1-48.

Boynton, R. M., & Boss, D. E. (1971). The effect of background luminance and contrast
upon visual field location. Illuminating Engineering, 66, 173-186.

Byrne, M. D. (1993). Using icons to find documents: Simplicity is critical. Proceedings of
INTERCHI ‘93, New York: ACM, 446-453.

Byrne, M. D., Anderson, J. R., Douglass, S., & Matessa, M. (1999). Eye tracking the
visual search of click-down menus. Proceedings of CHI 99, New York: ACM,
402-409.

Card, S. K. (1982). User perceptual mechanisms in the search of computer command
menus. Proceedings of CHI ‘82, New York: ACM, 190-196.

Card, S. K. (1983). Visual search of computer command menus. In H. Bouma & D. G.
Bouwhuis (Eds.), Attention and Performance X: Control of Language
Processes. London: Lawrence Erlbaum Associates, 97-108.

Card, S. K., Moran, T. P., & Newell, A. (1983). The Psychology of Human-Computer
Interaction. Hillsdale, NJ: Lawrence Erlbaum Associates.

Carswell, C. M. (1992). Choosing specifiers: An evaluation of the basic tasks model of
graphical perception. Human Factors, 34(5), 535-554.

Carter, E. C., & Carter, R. C. (1981). Color and conspicuousness. Journal of the Optical
Society, 71, 723-729.

Cave, K. R., & Wolfe, J. M. (1990). Modeling the role of parallel processing in visual
search. Cognitive Psychology, 22, 225-271.

Chong, R. S. (1998a). Modeling dual task performance improvement: Casting executive
process knowledge acquisition as strategy refinement. (Computer Science Technical
Report CSE-TR-378-98). Ann Arbor, Michigan: The University of Michigan.
Also, Ph.D. dissertation in Computer Science and Engineering, The University of
Michigan.

Chong, R. S. (1998b). Modeling dual-task performance improvement with EPIC-Soar.
Proceedings of the Twentieth Annual Conference of the Cognitive Science
Society, Hillsdale, NJ: Lawrence Erlbaum.

Clancy, T. (1984). The Hunt for Red October. Annapolis, Maryland: Naval Institute
Press.

Cleveland, W. S., & McGill, R. (1985). Graphical perception and graphical methods for
analyzing scientific data. Science, 229, 828-833.

153

Cohen, K. M. (1981). The development of strategies of visual search. In D. F. Fisher, R.
A. Monty, & J. W. Senders (Eds.), Eye movements, Cognition, and Visual
Perception. Hillsdale, NJ: Lawrence Erlbaum Associates, 271-288.

Crosby, M. E., & Peterson, W. (1991). Using eye movements to classify search
strategies. Proceedings of the Human Factors Society 35th Annual Meeting,
Santa Monica, CA: Human Factors Society, 1476 - 1480.

Dosher, B. A. (1998). Models of visual search: Looking for a face in the crowd. In D.
Scarborough & S. Sternberg (Eds.), Methods, Models, and Conceptual Issues:
An Invitation to Cognitive Science. Cambridge, Massachusetts: MIT Press, 455-
521.

Drury, C. G., & Clement, M. R. (1978). The effect of area, density, and number of
background characters on visual search. Human Factors, 20(5), 597-602.

Engel, F. L. (1977). Visual conspicuity, visual search, and fixation tendencies of the eye.
Vision Research, 17, 95-108.

Findlay, J. M. (1992). Programming of stimulus-elicited saccadic eye movements. In K.
Rayner (Ed.), Eye Movements and Visual Cognition: Scene Perception and
Reading. New York: Springer-Verlag.

Fisher, D. F., Monty, R. A., & Senders, J. W. (Eds.). (1981). Eye movements,
Cognition, and Visual Perception. Hillsdale, NJ: Lawrence Erlbaum Associates.

Francik, E. P., & Kane, R. M. (1987). Optimizing visual search and cursor movement in
pull-down menus. Proceedings of the Human Factors Society 31st Annual
Meeting, Santa Monica, CA: Human Factors Society, 722-726.

Galitz, W. O. (1993). User-Interface Screen Design. Wellesley, MA: QED Information
Sciences, Inc.

Giroux, L., & Bellau, R. (1986). What’s on the menu? the influence of menu content on
the selection process. Behaviour and Information Technology, 5, 169-172.

Gordon, I. (1968). Interactions between items in visual search. Journal of Experimental
Psychology, 76, 348-355.

Han, S. H., Jorna, G. C., Miller, R. H., & Tan, K. C. (1990). A comparison of four
input devices for the Macintosh interface. Proceedings of the Human Factors
Society 34th Annual Meeting, Santa Monica, CA: Human Factors Society, 267-
271.

Hollands, J. G., & Merikle, P. M. (1987). Menu organization and user expertise in
information search tasks. Human Factors, 29(5), 577-586.

Hornof, A. J., & Kieras, D. E. (1997). Cognitive modeling reveals menu search is both
random and systematic. Proceedings of ACM CHI 97: Conference on Human
Factors in Computing Systems, New York: ACM, 107-114.

154

Hornof, A. J., & Kieras, D. E. (1999). Cognitive modeling demonstrates how people use
anticipated location knowledge of menu items. Proceedings of ACM CHI 99:
Conference on Human Factors in Computing Systems, New York: ACM, 410-
417.

John, B. E., & Kieras, D. E. (1996). The GOMS family of user interface analysis
techniques: Comparison and contrast. ACM Transactions on Computer-Human
Interaction, 3, 320-351.

Jonides, J., & Gleitman, H. (1972). A conceptual category effect in visual search: O as
letter or as digit. Perception & Psychophysics, 12, 457-460.

Kieras, D. E., & Meyer, D. E. (1997). An overview of the EPIC architecture for cognition
and performance with application to human-computer interaction. Human-
Computer Interaction, 12(4), 391-438.

Kieras, D. E., Wood, S. D., Abotel, K., & Hornof, A. (1995). GLEAN: A computer-
based tool for rapid GOMS model usability evaluation of user interface designs.
Proceedings of the ACM Symposium on User Interface Software and
Technology, UIST ‘95, New York: ACM, 91-100.

Kieras, D. E., Wood, S. D., & Meyer, D. E. (1997). Predictive engineering models based
on the EPIC architecture for a multimodal high-performance human-computer
interaction task. ACM Transactions on Computer-Human Interaction, 4(3), 230-
275.

Klatzky, R. (1980). Human Memory. (2nd ed.). San Fransisco: W. H. Freeman.

Koopman, B. O. (1946). Search and Screening. (OEG Report No. 56). Washington, D.
C.: Operations Evaluation Group, Office of the Chief of Naval Operations, Navy
Department.

Krendel, E. S., & Wodinsky, J. (1960). Search in an Unstructured Visual Field. Journal
of the Optical Society of America, 50(6), 562-568.

Laird, J., Rosenbloom, P., & Newell, A. (1986). Universal subgoaling and chunking.
Boston: Kluwer Academic Publishers.

Landauer, T. K., & Nachbar, D. W. (1985). Selection from alphabetic and numeric menu
trees using a touch screen: breadth, depth and width. Proceedings of CHI ‘85,
New York: ACM.

Lee, E., & MacGregor, J. (1985). Minimizing user search time in menu retrieval systems.
Human Factors, 27(2), 157-162.

Loftus, G. R. (1976). A framework for a theory of picture recognition. In R. A. Monty &
J. W. Senders (Eds.), Eye Movements and Psychological Processes. Hillsdale,
NJ: Lawrence Erlbaum.

Lohse, G. L. (1993). A cognitive model for understanding graphical perception. Human-
Computer Interaction, 8, 353-388.

155

MacGregor, J., & Lee, E. (1987). Menu search: Random or systematic? International
Journal of Man-Machine Studies, 26(5), 627-631.

MacGregor, J., Lee, E., & Lam, N. (1986). Optimizing the structure of database menu
indexes: A decision model of menu search. Human Factors, 28(4), 387-399.

MacKenzie, I. S., & Buxton, W. (1992). Extending Fitts’ law to two-dimensional tasks.
Proceedings of CHI ‘92, New York: ACM, 219-226.

Mayes, J. T., Draper, S. W., McGregor, A. M., & Oatley, K. (1988). Information Flow
in a User Interface: The Effect of Experience and Context on the Recall of MacWrite
Screens. In D. M. Jones & R. Winder (Eds.), People and Computers IV.
Cambridge, UK: Cambridge University Press, 275-289.

Mayhew, D. J. (1992). Principles and Guidelines in Software User Interface Design.
Englewood Cliffs, New Jersey: Prentice Hall.

Meyer, D. E., Abrams, R. A., Kornblum, S., Wright, C. E., & Smith, J. E. K. (1988).
Optimality in human motor performance: Ideal control of rapid aimed movements.
Psychological Review, 95(3), 340-370.

Meyer, D. E., & Kieras, D. E. (1997a). A computational theory of executive cognitive
processes and multiple-task performance: Part 1. Basic mechanisms. Psychological
Review, 104(1), 3-65.

Meyer, D. E., & Kieras, D. E. (1997b). A computational theory of executive cognitive
processes and multiple-task performance: Part 2. Accounts of psychological
refractory-period phenomena. Psychological Review, 104(4), 749-791.

Meyer, D. E., & Kieras, D. E. (1999). Précis to a practical unified theory of cognition and
action: Some lessons from EPIC computational models of human multiple-task
performance. In D. Gopher & A. Koriat (Eds.), Attention and Performance
XVII. Cognitive Regulation of Performance: Interaction of Theory and
Application. Cambridge, MA: MIT Press, 17-88.

Meyer, D. E., Smith, J. E. K., Kornblum, S., Abrams, R. A., & Wright, C. (1990).
Speed-accuracy tradeoffs in aimed movements: Toward a theory of rapid voluntary
action. In M. Jeannerod (Ed.), Attention and Performance XIII. Hillsdale, N. J.:
Lawrence Erlbaum, 173-226.

Monty, R. A., & Senders, J. W. (1976). Eye Movements and Psychological Processes.
Hillsdale, NJ: Lawrence Erlbaum.

Müller-Brockmann, J. (1981). Grid Systems in Graphic Design. New York: Hastings
House Publishers, Inc.

Neisser, U. (1963). Decision-time without reaction-time: experiments in visual scanning.
American Journal of Psychology, 76, 376-385.

Neisser, U. (1976). Cognition and Reality. San Fransisco: W. H. Freeman & Co.

156

Newell, A. (1990). Unified Theories of Cognition. Cambridge, Massachusetts: Harvard
University Press.

Nilsen, E., & Evans, J. (1999). Exploring the divide between two unified theories of
cognition: Modeling visual attention in menu selection. CHI 99 Extended
Abstracts, New York: ACM, 288-289.

Nilsen, E. L. (1991). Perceptual-motor control in human-computer interaction. (Tech.
Rep. No. 37). Ann Arbor, Michigan: The Cognitive Science and Machine
Intelligence Laboratory, The University of Michigan. Also: Ph.D. dissertation in
Psychology, The University of Michigan, 1991.

Norman, K. L. (1991). The Psychology of Menu Selection: Designing Cognitive
Control of the Human/Computer Interface. Norwood, N. J.: Ablex.

Paap, K. R., & Roske-Hofstrand, R. J. (1988). Design of menus, Handbook of Human
Computer Interaction. Amsterdam: Elsevier Science Publishers, 205-235.

Parton, D., Huffman, K., Pridgem, P., Norman, K., & Shneiderman, B. (1985).
Learning a menu selection tree: training methods compared. Behaviour and
Information Technology, 4, 81-91.

Perlman, G. (1984). Making the right choices with menus. Proceedings of Interact ‘84,
Elsevier Science Publishers, 317-321.

Prinz, W., Nattkemper, D., & Ullmann, T. (1992). Moment-to-moment control of
saccadic eye movements: Evidence from continuous search. In K. Rayner (Ed.),
Eye Movements and Visual Cognition: Scene Perception and Reading. New
York: Springer-Verlag.

Raman, T. V. (1997). Auditory User Interfaces: Toward the Speaking Computer.
Boston: Kluwer Academic Publishers.

Rayner, K. (1992). Eye Movements and Visual Cognition: Scene Perception and
Reading. New York: Springer-Verlag.

Resnick, P., & Virzi, R. A. (1993). Skip and scan: Cleaning up telephone interfaces.
Proceedings of CHI ‘93, New York: ACM Press.

Rosenbaum, D. A. (1991). Human motor control. New York: Academic Press.

Russo, J. E. (1978). Adaptation of cognitive processes to the eye movement system. In J.
W. Senders, D. F. Fisher, & R. A. Monty (Eds.), Eye Movements and the
Higher Psychological Functions. Hillsdale, New Jersey: Lawrence Erlbaum
Associates, 89-109.

Scott, D. (1993). Visual search in modern human-computer interfaces. Behaviour and
Information Technology, 12(3), 174-189.

Sears, A. (1993). Layout appropriateness: A metric for evaluating user interface widget
layout. IEEE Transactions on Software Engineering, 19(7), 707-719.

157

Sears, A., & Shneiderman, B. (1994). Split Menus: Effectively Using Selection Frequency
to Organize Menus. ACM Transactions on Computer-Human Interaction, 1(1),
27-51.

Senders, J. W., Fisher, D. F., & Monty, R. A. (Eds.). (1978). Eye Movements and the
Higher Psychological Functions. Hillsdale, NJ: Lawrence Erlbaum Associates.

Shneiderman, B. (1992). Designing the User Interface: Strategies for effective human-
computer interaction. (Second ed.). Reading, Massachusetts: Addison-Wesley.

Smith, M. R. (Ed.). (1985). Military Enterprise and Technological Change. Cambridge,
Massachusetts: MIT Press.

Smith, S. L., & Mosier, J. N. (1986). Guidelines for designing user interface software.
(Technical Report ESD-TR-86-278). Hanscom Air Force Base, MA: USAF
Electronic Systems Division.

Somberg, B. L. (1987). A comparison of rule-based and positionally constant
arrangements of computer menu items. Proceedings of CHI ‘87, New York: ACM,
79-84.

Somberg, B. L., Boggs, G. J., & Picardi, M. C. (1982). Search and decision processes in
human interaction with menu-driven systems. Presented at the Human Factors
Society 26th Annual Meeting. Paper did not appear in the conference proceedings,
but was supplied by the author.

Somberg, B. L., & Picardi, M. C. (1983). Locus of the information familiarity effect in the
search of computer menus. Proceedings of the Human Factors Society 27th
Annual Meeting, Santa Monica, CA: Human Factors Society, 826-830.

Sontag, S., & Drew, C. (1998). Blind Man’s Bluff: The Untold Story of American
Submarine Espionage. New York: Public Affairs.

Staggers, N. (1993). Impact of screen density on clinical nurses’ computer task
performance and subjective screen satisfaction. International Journal of Man-
Machine Studies, 39, 775-792.

Treisman, A. (1986). Features and objects in visual processing. Scientific American,
255, 114B-125.

Tufte, E. R. (1983). The Visual Display of Quantitative Information. Cheshire,
Connecticut: Graphics Press.

Tullis, T. S. (1988). A System for Evaluating Screen Formats: Research and Application.
In R. Hartson & D. Hix (Eds.), Advances in Human-Computer Interaction.
(Vol. 2). Norwood, NJ: Ablex, 214-286.

Vandierendonck, A., Van Hoe, R., & De Soete, G. (1988). Menu search as a function of
menu organization, categorization and experience. Acta Psychologica, 69(3), 231-
248.

158

Vartabedian, A. G. (1971). The effects of letter size, case, and generation method on CRT
display search time. Human Factors, 13, 363-368.

Walker, N., Meyer, D. E., & Smelcer, J. B. (1993). Spatial and temporal characteristics of
rapid cursor-positioning movements with electromechanical mice in human-
computer interaction. Human Factors, 35(3), 431-458.

Wiesmeyer, M. D. (1992). An Operator-Based Model of Human Covert Visual
Attention. Ph.D. dissertation in Computer Science and Engineering, The
University of Michigan, Ann Arbor, Michigan.

Williams, J. R. (1988). The effects of case and spacing on menu option search time.
Proceedings of the Human Factors Society 32nd Annual Meeting, Santa
Monica, CA: Human Factors Society, 341-43.

Williams, L. G. (1966a). The effect of target specification on objects fixated during visual
search. Perception & Psychophysics, 1, 315-318.

Williams, L. G. (1966b). Target conspicuity and visual search. Human Factors, 8(1), 80-
92.

Wolf, C. E. (1986). BNA “HN” command display: Results of user evaluation.
Unpublished technical report. Tullis (1988) cites as available from Cynthia Wolf
Connally, Unisys Corporation, 19 Morgan, Irvine, CA 92718. But Cynthia Wolf is
evidently no longer with Unisys, and Unisys no longer at this location.

Wood, S. D. (1993). Issues in the implementation of a GOMS-model design tool.
Unpublished report, University of Michigan.

Woodward, R. M. (1972). Proximity and direction of arrangement in numeric displays.
Human Factors, 14(4), 337-343.

